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​Abstract​
​Background:​​The canonical value of 37 °C reflects​​a historical convention rather than a​
​universal biological norm, yet it continues to be treated as one. Health-informatics systems​
​reproduce similar conventions by encoding ethnicity as fixed administrative categories whose​
​analytic meaning is uncertain. How such inherited labels relate to temperature measurements is​
​largely unexamined, particularly with respect to the ways data structures themselves shape what​
​appears as variation.​

​Objective:​​To assess whether administratively encoded​​ethnicity categories generate measurable​
​temperature differences under highly standardized measurement conditions, and to evaluate what​
​this indicates about their role and limitations within informatics classification systems.​

​Methods:​​A secondary observational analysis was conducted​​using publicly available infrared​
​thermography data collected under tightly controlled conditions. The analytic sample was​
​restricted to adults aged 18-30 and to the two most accurate facial temperature measures –​
​full-face maximum temperature (T_max) and inner-canthus temperature (T_CEmax) – recorded​
​using Infrared Cameras Inc. (ICI) infrared thermometry device. One-way fixed-effects ANOVA​
​assessed mean differences across six encoded ethnic categories, with full assumption checks and​
​effect-size estimation.​

​Results:​​Small but statistically reliable differences​​were detected for both inner-canthus​
​temperature (T_CEmax) (F(5, 882) = 6.73, p = 3.64×10⁻⁶, η² = 0.04) and full-face maximum​
​temperature (T_max) (F(5, 882) = 4.15, p = 0.00099, η² = 0.02). ANOVA assumptions were​
​adequately met for both outcomes.​

​Conclusions:​​Ethnicity categories encoded in the dataset​​corresponded to modest temperature​
​variation, not evidence of biological distinction. Instead, the findings illustrate how​
​administrative categories can become statistically consequential under high measurement​
​precision, highlighting the need for refined ontologies, personalized baselines, and multi-scale​
​modeling in health-informatics design.​
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​1. Introduction​

​1.1 Background​
​For more than a century, 37 °C has defined “normal” body temperature, yet this value persists​
​more by convention than biological universality. Wunderlich’s nineteenth-century measurements​
​[1], drawn from a narrow clinical population and specific procedural norms, stabilized 37 °C as a​
​benchmark even though contemporary evidence shows that temperature varies by age, sex,​
​circadian timing, measurement site, and individual physiology. Temperature thus functions as a​
​paradigmatic biometric: historically contingent, clinically foundational, and shaped by the​
​instruments and standards that make it measurable. A similar logic governs ethnicity in​
​health-informatics systems, where complex identities are compressed into administrative​
​categories so they can enter data schemas and analytic pipelines. Once encoded, both​
​temperature norms and ethnicity labels acquire an interpretive authority that exceeds their​
​empirical grounding, influencing how biomedical systems classify bodies and render certain​
​distinctions visible.​

​1.2 Scientific Problem​
​Contemporary informatics systems treat temperature and ethnicity as stable, self-evident fields,​
​yet it remains unclear whether these encoded categories generate discernible structure in​
​physiological measurements or merely reflect the architecture of the data model. This project​
​tests whether administratively defined ethnicity categories correspond to measurable variation in​
​facial temperature under tightly controlled imaging conditions. Several challenges complicate​
​this question: ethnicity in informatics is an institutional abstraction with uncertain​
​correspondence to phenotype or ancestry; surface temperature fluctuates with vasomotor tone,​
​perfusion, evaporative cooling, and ambient conditions even under standardized protocols; and​
​infrared thermography is sensitive to calibration, emissivity assumptions, and device​
​performance. When environmental and procedural variability are minimized, however, any​
​residual differences across encoded categories become analytically informative not as indicators​
​of physiology, but as reflections of how data systems partition human variation.​

​1.3 Objective​
​The objective of this study is to determine whether the ethnicity categories encoded in a​
​rigorously standardized thermographic dataset correspond to measurable variation in two​
​validated facial temperature measures (T_max and T_CEmax). More broadly, the study​
​examines how administratively defined demographic fields behave within health-informatics​
​analyses and what their statistical patterns imply for classification, interpretation, and​
​decision-support systems that rely on routinely collected demographic data. Because the dataset​



​Lohier​​2​

​is publicly available and the analytic workflow is fully documented, the results are reproducible​
​and available for independent verification.​

​1.4 Overview​
​This paper is organized to connect the historical development of thermometry with the​
​informatics systems that encode human difference. Sections 2 and 3 together constitute the​
​literature review. Section 2 traces how temperature became a clinical and epistemic object​
​through evolving instruments, modern device standards, and the constraints of infrared​
​thermography. Section 3 shifts to health informatics and examines how measurement practices​
​and data models translate complex biosocial identities into computable categories. Section 4​
​describes the thermographic dataset and analytic constraints, and Section 5 outlines the​
​methodological and philosophical rationale for using ANOVA to interrogate its categorical​
​structure. Section 6 presents the empirical results, and Section 7 interprets them across clinical,​
​informatics, epidemiologic, and philosophical domains. Section 8 offers representational and​
​methodological recommendations, and Section 9 discusses limitations and future directions. The​
​paper concludes that the small but detectable differences observed across encoded ethnic​
​categories reflect not physiology but the representational and measurement structures through​
​which contemporary informatics makes human variation legible.​

​2. Thermometry: Devices, Error, and the Interpretation of​
​Temperature​

​2.1 Fundamental Origins​
​Thermometry is the quantitative measurement of human body temperature using instruments that​
​register the thermal energy at the site of contact, providing an objective physiological signal for​
​diagnosis and observation. Its validity depends on the location of measurement, the physics of​
​heat transfer, and the accuracy and calibration of the device, since thermometers detect only local​
​heat and are sensitive to technical and environmental factors [1-5].​

​From Sensory Judgment to Numerical Authority​
​The history of thermometry traces not merely the invention of an instrument but the​
​transformation of medical knowledge itself from a qualitative observation to numerical authority.​
​The idea that heat could reveal the hidden order of life long predated the thermometer. In​
​antiquity, Galen had described organs as relatively “hot” or “cold,” classifying parts of the body​
​by their perceived warmth, but only through the senses [2]. In the late sixteenth century, Joannes​
​Haslerus’s De Logistica Medica (1578) transformed this qualitative legacy into calculation [6].​
​Haslerus argued that medicine must be restored to the precision of number and proportion,​
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​proposing that each body possessed a natural degree of heat or cold determined by latitude,​
​season, and age, and could be computed mathematically – such that an inhabitant of Antwerp, for​
​example, would be “of the first degree of cold” [2, 6]. A schematic from Haslerus’s system is​
​reproduced in Appendix A.1. In essence, Haslerus helped reposition medicine toward numerical​
​scale and mathematical regularity.​

​By the seventeenth century, this confidence in quantification had become a defining feature of​
​natural philosophy. As Shryock observed, early iatromathematicians believed that “phenomena​
​perceptible only to reason” could be revealed through measurement [7]. Santorio (1561-1636)​
​exemplified this idea through early instruments aimed at quantifying hidden physiological​
​processes [1, 2]. His experiments marked one of the first sustained efforts to measure such​
​processes, aiming to render the body’s fluctuations legible (see Appendix A.2).​

​Early Experimental Thermometry​
​Across the eighteenth and early nineteenth centuries, thermometry shifted from a philosophical​
​curiosity to a reproducible clinical method. Anton de Haen demonstrated that fever followed a​
​daily course through repeated bedside measurements. In the nineteenth century, Jacques Breschet​
​and Antoine Becquerel showed that inflamed tissues were warmer than healthy ones, and Gabriel​
​Andral sought to “map out the courses of temperature” in disease, marking the transition from​
​isolated readings to patterned, temporal observation [1, 2].​

​These cumulative investigations converged in the work of Carl Reinhold August Wunderlich,​
​whose​​Medical Thermometry and Human Temperature​​(1871)​​systematized thousands of cases​
​and millions of observations [1]. Wunderlich defined 37 °C as the mean temperature of health​
​and 38 °C as the threshold of fever, asserting that “thermometry in disease is an objective,​
​physical method of investigation.” His manual provided precise procedural instructions:​

​“The instrument may be centigrade or Fahrenheit, but it must be accurate. If self-registering, the​
​nurse can use it at stated times, and the physician can read it at the next visit. The bulb is to be​
​inserted in the axilla, previously dried if moist from perspiration, just beneath the fold of the​
​pectoralis major muscle… It is left in situ… for eight to ten minutes… the degree is then read off​
​and recorded on a blank diagram.” [1]​

​Critical Reflection​
​Ironically, these meticulous directions reveal the persistence of subjectivity within an enterprise​
​devoted to its elimination. As Engel later observed, “the observational act is a unitary deed of​
​which our choice is an active subjective component” [8]. Temperature readings still depended on​
​touch, timing, posture, and interpretation, and without a reliable external reference, precision​
​offered little guarantee of accuracy. The mercury-glass thermometers of the period routinely​
​drifted and could not be easily checked against a stable standard, leaving even “standardized”​
​measurements open to quiet error [9].​
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​Early Considerations of Ethnicity​
​In the 1850s, efforts to relate temperature to human variation brought ethnicity into view, but the​
​evidence was limited and largely anecdotal. Wunderlich briefly suggested that observed​
​differences might reflect factors such as race or climate, yet he provided almost no empirical​
​support for this claim [1]. His only substantive evidence came from a passing remark in​
​Livingstone’s Travels in South Africa​​, where Livingstone​​recorded his own oral temperature at​
​100 °F and that of local inhabitants at 98 °F [10]. Wunderlich immediately undercut its authority,​
​reminding readers that “a single observation of temperature is always an imperfect and​
​unsatisfactory standard” [1]. The episode shows how tenuous the earliest attempts were to link​
​body temperature to purported ethnic or racial differences. Despite later recognition of wide​
​inter- and intra-individual variation [3, 4, 11, 12], Wunderlich’s number has endured, shaped as​
​much by the authority of his method as by the universality of his sample [1].​

​2.2 The Contemporary Thermometric System​

​Contact and Infrared Modalities in Modern Thermometry​
​Modern clinical thermometry relies on two broad modalities: contact instruments (such as​
​mercury-in-glass and bimetallic thermometers) and optical systems, most prominently infrared​
​thermography (IRT). As Raiko and colleagues note, each modality detects only the thermal​
​signals available through its physical interface, thereby defining what can be measured directly,​
​what must be inferred, and where systematic error may enter [13].​

​IRT operates differently from contact methods. Rather than measuring the temperature of internal​
​tissues or even the probe-skin interface, it detects infrared radiation emitted from the skin​
​surface, a signal shaped by skin emissivity, local blood flow, and the temperature gradient​
​between body and environment [13]. Because emissivity expresses how closely a surface​
​behaves like an ideal blackbody, the accuracy of any inferred temperature depends on its​
​stability. Clinical IRT systems generally assume a skin emissivity of approximately 0.98, and​
​even small deviations from this value can generate errors approaching 1 °C, a range large enough​
​to alter fever screening outcomes [13].​

​Optical Pathways, Pigmentation, and the Stability of the Thermal Signal​
​A central question for surface-based thermometry is whether skin pigmentation alters infrared​
​temperature readings. Empirically, the answer is clear: human skin emissivity does not differ​
​meaningfully across pigmentation levels. In a controlled study of 65 adults representing a wide​
​range of Fitzpatrick types, emissivity values clustered tightly between 0.96 and 0.99 with no​
​significant group differences [14]. A larger study of 289 male volunteers (including Caucasian,​
​Black, and individuals of mixed ancestry) likewise found that melanin content did not change​
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​emissivity or reflectivity when measurements were taken under standardized conditions with a​
​clinical infrared thermometer [15].​

​Even so, small but systematic temperature differences still emerge across pigmentation groups,​
​and these arise through mechanisms other than emissivity. In the 289-participant study, for​
​example, the contrast between temple and wrist temperatures was slightly greater among​
​participants with darker skin, despite uniform devices, fixed emissivity parameters, and constant​
​measurement distance [15]. Similar patterns appear in more recent controlled cooling​
​experiments, where identical thermal perturbations produced apparent temperature differences of​
​nearly 1 °C between the lightest and darkest skin tones [17]. Because emissivity appears stable​
​across skin tones [14], these discrepancies are more plausibly attributable to non-emissivity​
​optical and device-processing factors than to intrinsic thermoregulatory physiology, though this​
​dataset cannot distinguish these mechanisms directly [3].​

​These optical and device effects take on added significance in datasets that encode ethnicity​
​rather than direct measures of pigmentation. Constitutive skin color is a composite trait shaped​
​by melanin content, genetic ancestry, environmental exposure, and adaptive responses [16].​
​Although ethnicity categories do not capture this complexity, in many populations they correlate​
​broadly with skin pigmentation. As a result, pigmentation-linked measurement artefacts can​
​become mapped onto administrative ethnic labels, creating the appearance of group-level​
​temperature differences even when core physiology is the same.​

​Surface Measurement, Core Physiology, and the Limits of Inference​
​Infrared thermography measures surface temperature, not the tightly regulated core temperature​
​that clinical practice treats as a physiological constant. Core temperature remains near 37 °C​
​through hypothalamic control of heat production and loss, whereas surface temperature varies​
​with local perfusion, evaporative cooling, ambient conditions, and the geometry of the​
​measurement site [3, 4]. Even under ideal protocols, the skin does not provide a direct reading of​
​internal thermal state.​

​Technical factors introduce additional variability. Infrared cameras differ in calibration stability,​
​sensor sensitivity, thermal resolution, and in the algorithms used to convert infrared radiation​
​into a displayed temperature [4, 5]. Minor discrepancies in calibration or signal processing can​
​produce shifts on the scale of tenths of a degree – small in absolute terms but large enough to​
​complicate interpretation when researchers are examining subtle group differences. Even when​
​emissivity is fixed and pigmentation effects are minimized, device behavior still contributes​
​noise that is difficult to separate from natural physiological fluctuations.​

​Because surface infrared measurements integrate thermodynamic, environmental, and​
​device-related influences, they do not directly represent core physiology. When group differences​
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​are small, their meaning becomes difficult to determine since they may reflect these influences​
​rather than biological variation. Such differences must therefore be interpreted with caution and​
​cannot be presumed to indicate true thermoregulatory change.​

​2.3 Standards, Calibration, and Data Structures​
​Early standards did little to address the fragility of clinical thermometry. As experimental​
​approaches proliferated, instruments remained prone to drift, and twentieth-century regulations​
​offered only modest safeguards. Standard mercury-glass thermometers were legally required to​
​display 96-106 °F (a range far wider than clinicians needed) and restoring the column to a true​
​baseline often required specialized equipment [9]. A 1975 evaluation found that seven of​
​twenty-five devices (28%) exceeded allowable accuracy limits, substantiating the claim that​
​national standards such as CS1-42 and CS1-52 constrained manufacturers without ensuring​
​clinical reliability [9]. Numerical readings thus entered practice on the authority of instruments​
​whose calibration and stability were never fully secured.​

​Modern regulations attempt to remedy these gaps. ISO 80601-2-56 specifies accuracy ranges for​
​clinical thermometers, typically ±0.3 to ±0.4 °C, and ASTM E1965 defines permissible errors for​
​infrared devices [5]. Yet achieving these limits in routine practice is difficult: infrared and​
​electronic sensors must perform across heterogeneous conditions even though their accuracy​
​depends on ambient temperature, distance, angle, emissivity, and component stability. All such​
​instruments are susceptible to material fatigue and calibration drift and require periodic​
​verification against reference standards [4]. Recent hospital evaluations show that while contact​
​devices often meet expectations, over half of non-contact forehead and ear thermometers fail​
​ISO/ASTM criteria even under controlled conditions, with uncertainty bands that exceed​
​clinically meaningful thresholds [5].​

​The limitations of these devices became widely visible during the COVID-19 pandemic, when​
​the World Health Organization (WHO) endorsed thermal imaging systems and handheld infrared​
​thermometers that were rapidly deployed for mass screening [18]. Many were installed without​
​blackbody reference targets and relied on inconsistent facial sites, which produced large​
​variability and frequent false negatives [18, 19]. Subsequent large-scale IRT evaluations showed​
​that this instability was not a failure of particular models but a predictable consequence of using​
​precision instruments outside the tightly controlled conditions required to maintain reliable​
​calibration [20].​

​These device-level constraints have direct analogues in the informational substrate into which​
​clinical measurements are encoded. Medical Event Vectors (MEVs) store “symptoms, signs,​
​laboratory treatments, diagnoses, and virtually all other medical data” in formats optimized for​
​durability and retrieval rather than analytic depth, compressing clinical nuance and allowing​
​systematic errors to persist [21]. Similar losses occur when continuous variables, such as​
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​temperature and blood pressure, are recoded into ordinal labels (“mild,” “moderate,” “severe”)​
​that facilitate documentation but discard granularity [19]. And in laboratory medicine, where​
​nearly 80 percent of results pass through automated systems without direct human interpretation,​
​the structure of data fields often exerts more influence on downstream analysis than the original​
​biological signal [22].​

​Calibration, whether mechanical or semantic, governs how closely a measurement reflects the​
​phenomenon it is meant to represent. A thermometer may meet formal accuracy limits yet still​
​blur physiologically meaningful variation, and a coding scheme may satisfy documentation​
​requirements while removing distinctions that matter for analysis. Bias, drift, or compression​
​introduced at either level carries forward into downstream interpretation and shapes estimates of​
​normality, fever thresholds, and the apparent structure of demographic categories. Devices and​
​data structures form a measurement architecture that makes temperature data usable while also​
​defining the limits of what can be inferred from it.​

​2.4 How Thermometry Constructed Normality and Medical Evidence​
​The clinical importance of thermometry is not limited to detecting fever; it lies in how​
​temperature became a vital sign that organizes medical judgment. Contemporary practice treats​
​body temperature alongside heart rate, blood pressure, and respiratory rate as one of four​
​principal indicators of “fundamental body functionality and efficiency” [3]. Normal body​
​temperature (normothermia) is understood as a prerequisite for proper physiological function,​
​whereas sustained hyperthermia or hypothermia perturbs metabolism, impairs cognition, and can​
​cause tissue damage [3]. Yet, as these historical foundations suggest, the very idea of a “normal”​
​temperature is not inherent to physiology; it is a historical construct shaped by the instruments​
​and conventions that first defined its boundaries.​

​Wunderlich’s benchmark was not merely descriptive; it was normative. Statistical averages​
​became criteria against which individuals were judged. What counted as “normal” depended on​
​the specific instruments and measurement sites that supplied the data. As Canguilhem noted,​
​instruments “give a result,” but diagnostic value comes only through interpretation [23].​
​Temperature becomes informative when clinicians connect a numerical value to​
​thermoregulatory physiology, site selection, the patient’s condition, and the question at hand. Yet​
​the 37 °C convention persisted because it offered an apparently objective standard at a time when​
​medicine sought numerical clarity.​

​Clinical reviews emphasize that infrared thermography nonetheless occupies a distinctive role in​
​modern temperature assessment. IRT can detect very small thermal differences and visualize​
​spatial patterns linked to inflammation, perfusion changes, neuropathy, and other​
​surface-manifesting processes [24]. Its interpretive value, however, depends on recognizing its​
​limits: surface temperature is shaped by radiation, convection, local blood flow, and ambient​
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​conditions, whereas core temperature is kept within a narrow hypothalamic range. Real-time​
​readings support screening and monitoring, but isolated values provide limited physiological​
​insight without contextual information about measurement conditions [3]. Each thermometric​
​device reveals only one layer of the body’s thermal physiology, and clinical meaning arises only​
​when that device’s constraints are taken into account. Through this a paradox emerges, being​
​“the more facts we learn the less we understand,” notably when complexity grows faster than the​
​models used to interpret it, a caution that applies equally to high-resolution thermal data [25].​

​Thermometry thus performed a double operation: it rendered the body legible as a sequence of​
​numerical values and organized those values into distributions that could be labeled “normal,”​
​“febrile,” or “hypothermic.” From Galen’s qualitative assessments of heat and cold to the​
​threshold-based rules of contemporary screening, temperature became something that could be​
​calculated, compared, and categorized. The authority of numerical precision emerged not only​
​from physiology but from the instruments and practices that made temperature measurable,​
​creating an architecture of normality in which devices produced readings, standards defined​
​acceptable error, and thresholds converted those readings into judgments. In this way,​
​measurement practices do not simply record normality; they help construct it.​

​3. Measurement, Representation, and the Ontology of​
​Human Difference in Health Informatics​

​3.1 Introduction​
​The same measurement logic that transformed bodily variation into numerical form now​
​underlies contemporary informatics. This section examines how that logic structures categories​
​of human difference, a process illustrated in Appendix Figure B.1. Because measurement​
​practices stabilize distinctions, tracing their logic clarifies how informatics inherits and amplifies​
​the classificatory assumptions embedded in earlier forms of quantification.​

​3.2 The Datafication of Human Diversity and Resulting Ontological Constraints​
​Genetics was one of the earliest attempts to translate human variation into a computable form.​
​Even after population genetics showed that most diversity lies within groups [26], researchers​
​continued to rely on broad labels such as Black, White, and Asian – categories applied “without​
​definition” yet carrying “powerful ramifications beyond the domain of science” [27, 28].​

​When ethnicity is formalized as a data field, its lived complexity is reduced so it can function​
​within structured analytic systems. In electronic health records, clinicians select from a narrow​
​menu of categories that must substitute for far broader identities and contexts. This simplification​
​reflects the logic of data infrastructures, which rely on stable, computable entries to function​
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​[29-32]. But these same structures narrow the space of interpretation, directing attention toward​
​predefined distinctions rather than those that emerge in practice.​

​The core issue is not simply that diversity becomes a variable, but that the variable acquires​
​ontological authority. Once formalized, categories become part of the conceptual terrain the​
​system treats as self-evident [27], shaping how future distinctions are built and limiting which​
​questions can even be asked. As Engel, drawing on Einstein notes, moving to a broader​
​framework does not erase earlier structures; it reveals their scope and limits [8]. In this way,​
​informatic ontologies do more than encode categories, they naturalize them, embedding prior​
​classificatory assumptions into the foundations of new models of human variation.​

​3.3 The Politics of Representation in Normality​
​Informatics does not just generalize from populations rather it generalizes from those populations​
​that are successfully encoded. Administrative categories function as gates to analytic visibility,​
​determining which bodies can contribute to norms and which are structurally absent from their​
​construction. As Birney notes, genetics continues to operationalize racialized groupings even​
​while rejecting their biological coherence, because such categories remain indispensable to data​
​organization and comparison [33]. Once embedded, these groupings stand in for populations they​
​cannot fully represent, yet the statistical patterns they yield circulate as if they were population​
​truths. Norms produced in this way are therefore not collective baselines but artifacts of selective​
​inclusion, shaped by sampling asymmetries, category design, and institutional convenience.​
​Canguilhem’s critique of the norm takes on a new register here: informatics does not merely​
​confuse averages with ideals, it stabilizes partial representations as reference points that govern​
​interpretation downstream [23]. Engel’s concern thus reappears not at the level of clinical​
​judgment, but at the level of data architecture itself, where what cannot be cleanly encoded fails​
​to register as difference at all [8, 31].​

​Critical Reflection​
​Population genetics complicates this. Bryc found over 99% correspondence between​
​self-reported and genetic ancestry in a large U.S. dataset [34]. Social categories can align with​
​biological and historical lineages at the population level, much as population-level temperature​
​averages can meaningfully describe trends. But correspondence does not confer biological​
​essentialism; a mean does not make a norm [23]. Informatics must therefore navigate categories​
​that are socially constructed and statistically patterned without collapsing one into the other.​

​Representational Stakes​
​Contemporary informatics thus operates through representational choices that shape which forms​
​of human difference can appear as analytic structure. Rather than resolving these questions at the​
​level of theory, they can be examined by observing how encoded demographic categories behave​
​within a concrete dataset. The thermographic dataset analyzed here serves as a case through​
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​which to trace how administratively defined ethnicity functions once it is fixed as a​
​computational field. The following section introduces the data and materials used to examine​
​how these representational commitments become visible in empirical analysis.​

​4. Data and Materials​

​4.1 A Note on Secondary Data Analysis​
​Secondary analysis imposes its own methodological constraints. As Sun argues, such work must​
​be guided by a prespecified analytic plan, since flexible exploration risks data dredging and​
​inefficient inference [35]. Within that framework, the empirical question here is intentionally​
​narrow: do the encoded ethnicity values produce any measurable temperature differences under​
​highly controlled conditions. Unlike primary studies, secondary analyses must accept the​
​assumptions, variable definitions, and measurement decisions already built into the dataset. This​
​project therefore adopts a transparent and tightly bounded analytic strategy, not to estimate​
​population effects, but to examine how the dataset’s representational choices structure the​
​patterns that emerge under controlled analytic conditions.​

​4.2 About the Original Data​
​This dataset originates from a clinical thermographic study evaluating the accuracy of infrared​
​thermographs (IRTs) for detecting elevated body temperature. Researchers collected facial​
​thermal and visible images alongside oral temperature readings from more than 1,100​
​participants using two systems, a FLIR device (IRT-1) and an Infrared Cameras Inc. (ICI) device​
​(IRT-2). All data were de-identified and collected under protocols approved by the U.S. Food and​
​Drug Administration (FDA) and Institutional Review Boards (IRBs) [19].​

​The study was motivated by ongoing uncertainty about the calibration and clinical accuracy of​
​IRT systems. Although international standards such as IEC 80601-2-59:2017 provide guidance​
​for laboratory evaluation of fever-screening devices, there are no consensus methods for​
​assessing clinical accuracy, and existing technical reports (for example, ISO/TR 13154:2017)​
​outline deployment practices rather than validation procedures [19]. The investigators therefore​
​implemented a standardized imaging protocol designed to reflect real-world variability in​
​devices, subjects, and environmental conditions.​

​Strict quality controls governed data collection. Participants acclimated indoors for 15 minutes,​
​and measurements were taken within a narrow ambient temperature range. Subjects were​
​excluded if their two oral temperature readings differed by more than 0.5 °C or if only one​
​reading was recorded – common indications of motion, improper probe placement, or recent​
​ingestion of hot or cold substances [20]. Of 1,115 enrolled individuals, 6 had incomplete records​
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​and 56 were removed due to inconsistent oral temperatures. Image-level exclusions for motion​
​artifacts yielded final samples of 1,020 subjects for IRT-1 and 1,010 for IRT-2 [19].​

​Facial regions of interest were fixed across participants (Appendix C.1), reducing variability​
​from inconsistent measurement sites and supporting direct comparison of the temperature​
​variables analyzed here.​

​4.3 Why this Dataset?​
​This dataset is well suited to the scientific problem because it isolates measurement noise to an​
​unusual degree: participants were acclimated, imaging conditions were standardized, and the two​
​most accurate temperature variables (T_max and T_CEmax) demonstrated strong agreement​
​with core temperature. By minimizing environmental, device, and procedural variability, the​
​dataset limits non-physiological sources of temperature variation. This controlled context​
​therefore allows any observed differences across encoded ethnic categories to be interpreted​
​chiefly as features of the dataset’s classificatory structure rather than artifacts of inconsistent​
​measurement.​

​A further advantage is that the dataset is fully publicly accessible through PhysioNet, a widely​
​used National Institute of Health (NIH)-supported repository for open clinical data [20]. Public​
​availability ensures that all analyses presented here can be independently reproduced or​
​extended, and allows the methodological choices of this project – including variable selection,​
​preprocessing, and statistical modeling – to be verified directly from the original source. This​
​openness strengthens the scientific validity of the study by ensuring transparency and facilitating​
​replication, both of which are essential for evaluating whether the observed patterns arise from​
​the data itself or from analytic interpretation.​

​4.4 Variables and Preprocessing​

​Variable Selection (T_max and T_CEmax)​
​The analysis focuses on two validated facial temperature variables: T_max, the full-face​
​maximum temperature, and T_CEmax, the maximum temperature in the inner canthus region.​
​These measures showed the strongest agreement with oral temperature in the original evaluation​
​(r ≈ 0.78–0.79; AUC ≈ 0.95–0.97) [19], with diagnostic performance summarized in Appendix​
​C.2. Both variables were averaged across four sequential imaging rounds to reduce random noise​
​and improve reliability.​

​The choice of these sites is also supported by physiological and thermometric considerations.​
​Surface temperature varies widely across the body, and each measurement site reflects different​
​patterns of conduction, convection, radiation, and evaporative heat loss [4]. The inner canthus is​
​less exposed to ambient variation and is perfused by vessels that track core temperature more​
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​closely, which makes it one of the most stable anatomical sites for infrared measurement [3]. In​
​contrast, forehead-based readings are more sensitive to emissivity changes, camera angle,​
​distance, and environmental conditions, factors that have been shown to reduce accuracy in​
​non-contact thermometry [5]. Restricting the analysis to T_max_mean and T_CEmax_mean​
​therefore minimizes site-specific noise and aligns with established evidence on which facial​
​regions yield the most dependable thermal information under controlled conditions.​

​Device Selection (IRT-2)​
​Although both infrared thermographs performed well, IRT-2 showed higher accuracy, better​
​calibration stability, and lower spatial noise, particularly for the T_max and T_CEmax variables​
​(for example, T_max AUC = 0.968 for IRT-2 vs. 0.951 for IRT-1) [19]. Because the analysis​
​depends on detecting small between-group differences, selecting the more precise device reduces​
​the likelihood that observed patterns reflect instrument variability rather than structure in the​
​data.​

​The dataset provides no calibration records for either device, so calibration quality cannot be​
​independently assessed. The analysis therefore relies on the performance metrics reported in the​
​original evaluation, which identified IRT-2 as the more accurate system under the study’s​
​standardized conditions [19]. External comparisons support this choice. Independent studies find​
​that ICI devices outperform comparable FLIR systems in accuracy, precision, and the detection​
​of fine-grained spatial temperature differences [36]. Using IRT-2 therefore provides the strongest​
​available measurement basis for the present analysis. Full device-performance comparisons​
​appear in Appendix C.2.​

​Age Restriction (18-30)​
​Because the dataset is overwhelmingly composed of young adults, the analysis is restricted to​
​participants aged 18 to 30. This reflects the demographic structure of the sample rather than a​
​theoretical boundary because roughly 94 percent of participants fall within this range, while very​
​few are older than 40 (Appendix C.3), and the authors note that the cohort is not representative​
​of the general population [20]. Age influences thermoregulation in that older adults tend to show​
​slightly lower and more variable core temperatures, but the small number of older individuals in​
​this dataset makes it impossible to model such differences reliably [37]. Restricting the analysis​
​to the age range the dataset meaningfully represents therefore reduces physiologic heterogeneity​
​and prevents instability from underpowered subgroups, which helps preserve statistical validity​
​and interpretability.​

​Ethnicity Variable​
​Ethnicity is analyzed exactly as recorded in the dataset, which lists six administratively defined​
​categories: Asian, Black or African American, Hispanic/Latino, White, American Indian or​
​Alaskan Native, and Multiracial. Because the original documentation does not describe how​
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​these labels were defined or collected [20], the analysis treats them as fixed administrative codes​
​rather than validated sociocultural or phenotypic constructs. Full distributions appear in​
​Appendix C.3. Infrared temperature measurements can be influenced by phenotypic factors such​
​as skin pigmentation [15, 17], yet the dataset includes neither Fitzpatrick skin type nor any direct​
​measure of skin tone [20]. Without these variables, pigmentation-related optical effects cannot be​
​evaluated independently and would be absorbed into the administrative categories if they exist.​
​For this reason, any observed group differences should be understood as features of the dataset’s​
​representational structure rather than evidence that the encoded labels reflect physiologically​
​meaningful distinctions.​

​A Note on Gender​
​Gender is retained exactly as recorded in the dataset (Female and Male), but it is not​
​incorporated as a primary analytic variable. Although gender can influence baseline temperature​
​through hormonal, vascular, and circadian factors [1, 5], including it here would introduce​
​additional physiological variability without advancing the central analytic question. The goal of​
​this study is to assess how ethnicity, as encoded in the dataset, behaves under tightly​
​standardized thermographic conditions. Stratifying the analysis by both gender and ethnicity​
​would multiply subgroup combinations and substantially reduce stability within several already​
​small ethnic categories, as shown in Appendix C.3. For these reasons, gender is preserved​
​descriptively but excluded from the main between-group comparisons.​

​4.5 Sample Characteristics​
​After applying the analytic restrictions – using IRT-2 measurements, retaining only T_max and​
​T_CEmax, averaging across four imaging rounds, and limiting the sample to participants aged​
​18-30 – the final dataset included 888 individuals with complete demographic information.​

​Ethnic composition of the analytic subset showed heterogeneous but unevenly distributed​
​representation (Table D.1). Just over half of participants identified as White (50.23%), followed​
​by Asian (25.00%), Black or African American (13.96%), Hispanic/Latino (5.74%), Multiracial​
​(4.73%), and American Indian or Alaskan Native (0.34%). These proportions provide necessary​
​context for interpreting between-group comparisons, particularly for categories with limited​
​sample sizes.​

​Mean temperature values showed modest variation across ethnicity groups for both infrared​
​measures. Inner-canthus temperatures (T_CEmax_mean) ranged from approximately 35.57 °C to​
​35.88 °C, with standard deviations between 0.14 °C and 0.68 °C. Full-face maximum​
​temperatures (T_max_mean) showed a similar pattern, ranging from 35.99 °C to 36.19 °C, with​
​standard deviations between 0.05 °C and 0.66 °C. Because mean values can obscure extreme​
​observations, minimum and maximum values were also examined to evaluate potential outliers.​
​Across all groups, the observed ranges fell within physiologically plausible bounds (roughly​
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​34-39 °C), and no group exhibited disproportionately high or low extremes. The narrow​
​within-group ranges support the interpretation that no anomalous measurements materially​
​influenced the descriptive statistics. Detailed numerical summaries for each group are provided​
​in Appendix D.2.​

​Data completeness was also evaluated both before and after deriving participant-level​
​temperature means. Before averaging, the proportion of missing values across the four​
​measurement rounds ranged from 5.35% to 13.08% (Table D.3). After averaging, all analytic​
​variables contained 0% missing data (Table D.4), indicating complete data integrity in the final​
​subset used for ANOVA.​

​5. Methods​

​5.1 Study Design: Philosophical, Theoretical, and Scientific Rationale​
​This analysis uses a comparative-effectiveness, secondary observational design to test whether​
​the dataset’s administratively encoded ethnicity categories correspond to detectable variation in a​
​temperature signal measured under tightly standardized conditions. Because the original study​
​was designed to evaluate infrared thermography rather than human difference, the present​
​analysis builds on its controlled ambient temperature, repeated imaging rounds, and validated​
​facial sites [19, 20]. Within a comparative-effectiveness framework, the goal is estimation rather​
​than causal inference, emphasizing effect sizes and confidence intervals to characterize the​
​magnitude and precision of within-dataset differences [35]. One-way ANOVA is therefore used​
​as a descriptive inferential tool to assess whether the dataset’s predefined categories exhibit​
​measurable structure beyond random variation. Analytic validity depends on identifying the​
​constraints of the dataset and evaluating whether those constraints give rise to detectable patterns​
​in the observed measurements.​

​Philosophical Logic: Why Group Comparison is the Right Structure​
​The decision to compare groups reflects a deeper philosophical issue: once encoded as variables,​
​complex biosocial identities become fixed computational objects that invite statistical​
​comparison. Group-based analysis does not assume biological kinds; rather, it interrogates how​
​categories gain stability through measurement. Canguilhem warns that numerical distinctions are​
​easily mistaken for natural ones when categories are treated as if they merely record reality​
​rather than constitute it [23]. Fabrega similarly emphasizes the gap between lived identity and its​
​administrative representation in clinical systems [38]. In this light, ANOVA operates not as a​
​search for inherent physiological differences but as a way to examine how informational​
​categories make certain distinctions visible.​

​Theoretical Logic: Why ANOVA Suits the Data and Question​
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​The dataset includes six discrete, non-overlapping, non-ordered ethnic labels. The analysis is​
​therefore concerned with the specific categories encoded by the system, not with sampling from​
​a broader population of possible labels. These factors function as fixed effects, consistent with​
​Ståhle’s observation that fixed-effects ANOVA is appropriate when the investigator is interested​
​in the particular levels of a factor rather than an underlying superpopulation [39]. The dependent​
​variables — T_max_mean and T_CEmax_mean — are continuous, and averaging multiple​
​imaging rounds yields stable participant-level estimates. These properties mean that the​
​theoretical structure of ANOVA aligns directly with the structure of the dataset: discrete​
​categorical predictors paired with continuous outcomes.​

​Scientific Logic: Why This Method Advances Health Informatics​
​Health informatics inevitably reduces complex human variation into computable categories, and​
​ANOVA offers a way to test whether those categories correspond to distinct underlying​
​distributions or simply reflect representational design [38]. Under tightly standardized​
​physiological conditions, the method evaluates whether the encoded ethnic labels carry​
​measurable informational content or whether they function as inherited artifacts of​
​documentation. As Cimino argues, controlled vocabularies are useful only when their categories​
​correspond to discernible differences rather than convenience [40]. ANOVA therefore becomes a​
​direct test of the informational value of these administrative fields, clarifying which​
​classifications support reliable inference and which risk misleading downstream analytics. In​
​doing so, the analysis treats the ontology of the dataset itself as an object of scrutiny and makes​
​visible how data structures shape and constrain what analytic systems can detect.​

​5.2 Statistical Framework and Assumptions​
​Statistical significance was evaluated using a two-sided α level of 0.01. This threshold was​
​selected given the large sample size and the multiple group comparisons involved, ensuring that​
​only the more pronounced differences were flagged as statistically significant. Effects with p <​
​0.01 were interpreted as significant, whereas p ≥ 0.01 was not considered evidence of a​
​difference. In line with Sun’s emphasis on estimation in comparative-effectiveness research, all​
​hypothesis tests are accompanied by effect sizes and confidence intervals to characterize the​
​magnitude and precision of observed differences rather than relying solely on binary significance​
​[35]. This approach maintains coherence with the study’s broader analytic aim: evaluating​
​whether the dataset’s encoded categories correspond to measurable structure in the temperature​
​distribution.​

​Because the purpose of ANOVA is to determine whether observed between-group differences​
​exceed what can be attributed to random error, its validity depends on whether the model’s​
​assumptions correctly characterize that error structure. Ståhle emphasizes that ANOVA’s F-ratio​
​is interpretable only when its pooled residual variance is a faithful estimate of underlying noise;​
​if groups differ in variance or if residuals deviate substantially from normality, the F-statistic can​
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​reflect artifacts of dispersion rather than genuine differences between means [39]. This matters​
​directly for the present study’s analytic aim, which asks whether encoded categories correspond​
​to meaningful structure in the temperature distribution: such structure cannot be inferred unless​
​the noise model is sound. Therefore, residual normality and homogeneity of variances were​
​evaluated using Q-Q plots, the Shapiro-Wilk test, and the Brown-Forsythe version of Levene’s​
​test. Across all analyses, effect sizes and confidence intervals accompany p-values to maintain an​
​emphasis on estimation rather than binary significance.​

​T_CEmax_mean ANOVA Assumption Validation​
​For T_CEmax_mean, residual diagnostics indicated that the ANOVA assumptions were​
​reasonably satisfied. The Q-Q plot showed approximately normal residuals with modest tail​
​deviations consistent with large sample sizes. Although the Shapiro-Wilk test was statistically​
​significant (W = 0.90, p < 2.2×10⁻¹⁶), this reflects the test’s sensitivity to minor departures from​
​normality rather than substantive distortion of the residual distribution. Variance equality across​
​ethnicity groups was supported by the Brown-Forsythe test (F = 0.57, p = 0.72). These​
​diagnostics, presented in Appendix E.1, indicate that the normality and homoscedasticity​
​assumptions for one-way ANOVA were adequately met for T_CEmax_mean.​

​T_max_mean ANOVA Assumption Validation​
​For T_max_mean, residual diagnostics indicated that ANOVA assumptions were adequately met.​
​The Q-Q plot showed approximately normal residuals with minor tail deviations typical of large​
​samples, and although the Shapiro-Wilk test was statistically significant (W = 0.91, p <​
​2.2×10⁻¹⁶), this reflected test sensitivity rather than substantive non-normality. Variance equality​
​across ethnicity groups was supported by the Brown-Forsythe test (F = 0.55, p = 0.74). The​
​corresponding diagnostics, provided in Appendix E.2, demonstrate that the normality and​
​homoscedasticity assumptions were reasonably satisfied for T_max_mean.​

​Because both temperature measures met ANOVA’s normality and variance assumptions, the​
​one-way ANOVA models were considered appropriate for evaluating mean temperature​
​differences across ethnicity groups. The subsequent analyses therefore proceed using standard​
​ANOVA without the need for variance-robust or permutation-based alternatives.​

​6. Results​

​6.1 ANOVA Results​
​A one-way ANOVA indicated a statistically significant effect of ethnicity on inner-canthus​
​temperature, F(5, 882) = 6.73, p = 3.64×10⁻⁶. Although the absolute temperature differences​
​were modest, the effect size was nonzero (η² = 0.04, 95% CI: 0.02-1.00), meaning that roughly​
​4% of the variance in T_CEmax_mean was associated with the encoded categories. Because η² is​



​Lohier​​17​

​a bounded parameter and the true variance explained is extremely small, the confidence interval​
​expands markedly, a pattern noted in methodological discussions of fixed-effects ANOVA when​
​effects approach the lower boundary [39].​

​The pattern of group means shows a subtle but consistent gradient. Asian and American​
​Indian/Alaska Native participants were clustered at the lower end of the temperature distribution,​
​whereas Hispanic/Latino, Multiracial, and White participants tended to exhibit slightly higher​
​mean inner-canthus values. Black or African-American participants fell near the middle of the​
​distribution. Importantly, the group confidence intervals overlap substantially, indicating that the​
​categories do not demarcate sharp underlying boundaries and should not be interpreted as​
​evidence of intrinsic biological differentiation, even though their aggregated means differ​
​statistically. Complete statistical output and the corresponding visualization are provided in​
​Appendix F.1.​

​A second ANOVA tested whether full-face maximum temperature (T_max_mean) differed​
​across groups. This model also revealed a significant effect of ethnicity, F(5, 882) = 4.15, p =​
​0.000993, with a small effect size (η² = 0.02, 95% CI: 0.01-1.00). The ordering of groups means​
​broadly mirrored that of the inner-canthus measure, with Hispanic/Latino and Multiracial groups​
​exhibiting the highest observed values, American Indian/Alaska Native at the low end, and other​
​groups distributed between these extremes. Again, the magnitude of the differences was small,​
​and group intervals overlapped, but the directional consistency across two independent facial​
​temperature metrics suggests that the encoded categories impose a reproducible structure on the​
​dataset. Complete results and the associated plot appear in Appendix F.2.​

​Although between-group differences reached statistical significance, the underlying temperature​
​distributions remained tightly bound. Across all six groups, the total spread in mean​
​inner-canthus temperature was only about 0.30 °C, and full-face maximum temperatures varied​
​by roughly 0.20 °C from lowest to highest. Within-group variability was similarly compact, with​
​standard deviations typically well under 0.7 °C, indicating that each group was narrowly​
​clustered around its mean.​

​7. Discussion​

​7.1 Clinical Lens​
​The statistically significant differences observed across encoded ethnic categories were small in​
​magnitude and fall well below thresholds of clinical concern. The narrow confidence intervals,​
​supported by the large sample size, show that although ANOVA detects structure in the data, the​
​effect sizes (η² = 0.02-0.04) indicate that ethnicity, as defined by the dataset’s administrative​
​categories, accounts for very little variance in the measured temperature signal under controlled​
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​conditions. A single temperature reading carries low information density and often provides​
​limited clinical insight without contextual or repeated measurements, since surface temperature​
​does not directly reflect core thermoregulation [1, 3]. Clinically, thresholds such as “fever”​
​function as decision rules that balance risk, uncertainty, and expected utility rather than as strict​
​numeric boundaries [41]. Importantly, the observed between-group differences lie close to the​
​uncertainty margins of non-contact infrared systems (approximately 0.3 °C), making differences​
​of this scale difficult to distinguish reliably from ordinary measurement variability even under​
​standardized imaging conditions [5]. In this context, the modest group differences observed here​
​should not be interpreted as clinically meaningful.​

​Real-world practice further reduces any potential clinical significance. Holtzclaw notes that​
​thermometers detect only the heat present at their interface and that readings vary substantially​
​across sites because temperature has meaning only in relation to the region being measured and​
​the mode of heat transfer involved [4]. In routine care, clinicians use different sites, techniques,​
​and devices, and patients may not be positioned, acclimated, or prepared in consistent ways [4,​
​11]. Device performance also varies in practice, even in hospital settings, further amplifying​
​uncertainty around small temperature differences. These sources of variability make it unlikely​
​that small, statistically detectable differences (on the order observed in this dataset) would hold​
​diagnostic value in real clinical environments.​

​7.2 Informatics Lens​
​From an informatics perspective, these findings show how data models can manufacture​
​apparent structure by stabilizing both identity and uncertainty. Encoding ethnicity as a discrete​
​field converts fluid, context-dependent identity into a durable computational object, so variation​
​is organized and compared along boundaries the schema itself defines. As Cimino notes,​
​controlled vocabularies create an appearance of conceptual clarity because they require​
​unambiguous entries [40]. At the same time, clinical evaluations show that infrared and​
​non-contact devices vary widely in accuracy and often fail to meet ISO and ASTM standards,​
​with readings shaped by the measurement interface and subject to calibration drift [4, 5]. When​
​such measurement uncertainty is ingested into informatics pipelines, it does not remain noise.​
​Instead, aggregation, stratification, and reuse can stabilize small calibration or site-dependent​
​fluctuations as consistent group differences. The resulting patterns reflect not inherent biological​
​separation, but the joint imprint of representational schemas that discretize identity and​
​numerical abstractions that render temperature comparable even as its uncertainty remains​
​unresolved.​

​The directional pattern of group means, where Asian and American Indian or Alaska Native​
​participants tended to fall slightly lower and Hispanic or Latino and Multiracial participants​
​slightly higher, may reflect several non-physiological mechanisms made visible through the​
​dataset’s representational structure. Prior controlled studies show that skin emissivity does not​
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​differ meaningfully across pigmentation levels [14, 15], yet report small apparent temperature​
​differences under identical imaging conditions [15, 17], implicating device-specific signal​
​processing, surface reflectance, and radiance-to-temperature conversion rather than intrinsic​
​thermoregulation. A second possibility lies in the administrative categories themselves, which​
​vary in size and internal heterogeneity and can influence the stability of aggregated means once​
​encoded as fixed analytic fields. Because the dataset includes no direct measures of​
​pigmentation, ancestry, or environmental context, these mechanisms cannot be evaluated​
​independently. Their consistency across both thermographic measures therefore points to the​
​joint effects of measurement and categorical encoding, illustrating how informatics ontologies​
​can render modest, non-specific variation statistically visible without implying biological​
​distinction.​

​7.3 Epidemiologic Lens​
​From an epidemiologic standpoint, the internal validity of the analysis is strong but tightly​
​bounded. Measurement conditions were standardized, exposures and outcomes were assessed​
​uniformly across groups, and age-related physiological variation was reduced through restriction.​
​The large overall sample size limits random error and yields narrow confidence intervals, making​
​it unlikely that the observed associations are due to chance alone [42]. However, precision is​
​uneven across strata. Several ethnicity categories contain relatively few participants, which​
​inflates uncertainty around their group means and limits the stability of between-group​
​comparisons despite the large total sample.​

​External validity is more constrained and hinges on construct validity rather than sampling alone.​
​The cohort consists almost entirely of healthy young adults, but the more consequential​
​limitation lies in the ethnicity variable itself. The dataset provides no information on how​
​ethnicity was assigned, whether by self-report, administrative classification, or observer​
​judgment, nor does it specify the criteria governing group membership. As a result, the exposure​
​under analysis is an unverified administrative label whose correspondence to sociocultural​
​identity, ancestry, or phenotype cannot be assessed.​

​In epidemiologic terms, this uncertainty weakens interpretability more than the cohort’s narrow​
​age range. Any statistically detectable differences across groups therefore describe the behavior​
​of the encoded variable within this dataset rather than a property of populations beyond it. The​
​findings are best understood as internally valid patterns generated under controlled conditions,​
​with limited generalizability and no warrant for physiological inference across ethnic groups.​
​This distinction is critical: the analysis supports inference about data structure, not about​
​biological difference.​
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​7.4 Philosophical Lens​
​These findings sharpen a broader philosophical concern: when complex forms of human​
​difference are compressed into fixed computational labels, the resulting numerical distinctions​
​can easily be mistaken for natural ones. Small statistical differences across encoded ethnic​
​groups demonstrate not biological separation but the ease with which classificatory structures​
​acquire the appearance of biological meaning. As Fabrega noted, medical categories often reflect​
​sociocultural convention rather than intrinsic boundaries [38]; the present results exemplify how​
​such conventions can stabilize into seemingly objective differences through their incorporation​
​into measurement and analytic systems.​

​The “Multiracial” category makes this dynamic especially visible. It aggregates heterogeneous​
​ancestries, phenotypes, and lived identities into a single residual bin, and the statistical​
​imprecision surrounding this group reflects that indeterminacy. The wide confidence interval​
​alone reveals the looseness of the category itself. When a label has no coherent boundary, the​
​variability attached to it becomes an artifact of its construction rather than evidence of distinct​
​thermal physiology.​

​The patterns in this dataset show how classification systems designed for operational simplicity​
​can shape the differences they appear to detect. The issue is not flawed measurement, but​
​representational scaffolding that imposes categorical boundaries with limited correspondence to​
​lived or physiological variation. The next section turns to possible approaches for redesign.​

​8. Proposed Solutions​

​8.1 Ontology Refinement​
​A first direction for improvement lies in refining the representational structures through which​
​health-informatics systems encode biosocial identity. Current ethnicity fields are rigid, mutually​
​exclusive, and administratively defined, collapsing multidimensional social experience into​
​single categorical bins that statistical models then treat as biologically meaningful. Cimino’s​
​desiderata emphasizes concept orientation, polyhierarchy, and nonsemantic identifiers as ways to​
​preserve nuance and support multiple analytic purposes without sacrificing interoperability [40].​
​Applying this logic would mean replacing monolithic ethnicity fields with multi-scalar identity​
​structures that allow individuals to be represented across dimensions such as ancestry​
​(probabilistic and multi-valued), sociocultural affiliation (e.g., migration history, linguistic​
​community), and clinically relevant contextual factors. This approach prevents administrative​
​abstractions from gaining unwarranted ontological weight and offers a representational solution​
​that aligns with both informatics design principles and the philosophical concerns raised in the​
​analysis.​
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​8.2 Personalized Baselines​
​A second solution reorients the problem entirely by shifting focus from between-group​
​comparisons to within-person physiology. As research in thermoregulation and longitudinal​
​temperature measurement demonstrates, individual “normal” temperatures vary systematically​
​and cannot be reduced to a single population mean [11, 12]. Precision medicine has long​
​recognized that a patient’s baseline is more informative for decision-making than comparisons to​
​externally defined norms, and clinical reasoning frameworks grounded in Bayesian decision​
​analysis likewise treat thresholds as context-dependent estimates influenced by patient values​
​and expected utilities rather than fixed biological cutoffs [41, 43]. A personalized-baseline​
​approach would extend this logic to thermal data by generating individualized reference ranges​
​through repeated or longitudinal measurements, interpreting deviations relative to an individual’s​
​stable pattern rather than the population’s average. Such an approach directly addresses the​
​philosophical concern raised by Canguilhem that statistical norms are not physiological ideals,​
​and it offers a practical way to avoid overinterpreting small group-level differences that may​
​simply reflect demographic or administrative structure [23]. Whether such an individualized​
​system is feasible at scale is a separate question, but the conceptual logic remains sound.​

​8.3 Multi-Scale Modeling​
​A third avenue for future work involves adopting multi-scale computational models to overcome​
​the limitations of purely statistical generalization. As An argues, statistical inference becomes​
​unreliable when the denominator – the space of possible variation – is poorly specified, a​
​condition common in human biological and social data [44]. Administrative ethnicity categories​
​compress heterogeneity in ways that obscure the mechanisms linking identity, physiology,​
​behavior, and environment; ANOVA can test for differences between groups, but not for the​
​origins or coherence of those groups. Multi-scale modeling offers a theory-based alternative by​
​mapping processes across biological, behavioral, and social levels, enabling researchers to​
​represent how heterogeneity arises rather than forcing it into static bins. Such models can​
​integrate diverse data types, capture dependencies across scales, and provide a structured​
​framework for generalization that does not depend on fragile population averages. In doing so,​
​they directly address the epistemological tension at the heart of contemporary informatics: how​
​to build systems that preserve meaningful variation rather than flatten it for computational​
​convenience.​

​9. Limitations and Future Work​

​9.1 Data Limitations​
​Although the study benefits from unusually controlled imaging conditions, several limitations​
​constrain the inferences that can be drawn. The most substantial concerns calibration​
​transparency. The dataset provides no calibration schedule, reference standards, uncertainty​
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​margins, or drift checks for the IRT-2 system, despite Zhou’s description of adherence to​
​consensus guidelines [19]. Without this metadata, small between-group differences cannot be​
​confidently interpreted as features of the underlying signal rather than residual instrument​
​behavior. This limitation is nontrivial given that infrared thermometers are sensitive to distance,​
​angle, and ambient conditions, and even well-maintained devices drift over time and require​
​verification against reference standards that many instruments fail to meet in practice [4, 5, 9].​
​Because modern devices typically operate within tolerances of approximately ±0.3 to ±0.4 °C,​
​the observed differences fall close to the limits of instrumental resolution, complicating​
​interpretation.​

​The dataset partially mitigates instrumental concerns through acclimation protocols and the​
​exclusion of subjects with inconsistent oral temperatures [20], but these controls do not address a​
​separate source of uncertainty: residual physiologic microvariation. Even under standardized​
​imaging conditions, surface temperature fluctuates with vasomotor tone, circadian phase,​
​emotional arousal, and local perspiration at magnitudes comparable to the observed group​
​differences [3, 4, 11, 13]. These influences are rarely measured directly and cannot be​
​retrospectively modeled in secondary analyses. As a result, part of the observed between-group​
​pattern may reflect ordinary microphysiological variability rather than stable categorical​
​structure.​

​Precision is also uneven across categories. Although the overall sample is large, several ethnic​
​groups contain markedly fewer participants than others, which reduces the stability of their mean​
​estimates and increases the uncertainty surrounding small differences [42]. Additional​
​interpretive limits arise from missing phenotypic variables: the dataset includes no measure of​
​skin pigmentation or Fitzpatrick type, preventing independent evaluation of pigmentation-linked​
​optical effects that could influence infrared readings [14, 15, 17]. The analytic restrictions further​
​narrow external validity. Because nearly all participants are between 18 and 30 years of age, the​
​dataset does not represent the thermoregulatory characteristics of older adults or clinical​
​populations.​

​A final limitation concerns construct validity. The dataset provides no information about how​
​ethnicity was defined or collected, whether through self-report, administrative assignment, or​
​institutional records. Any detected differences therefore reflect the behavior of an administrative​
​variable rather than a validated measure of sociocultural or ancestral identity [34].​

​9.2 Methodological and Theoretical Limitations​
​Methodologically, the analysis is limited by the structure of ANOVA itself which cannot​
​determine if differences reflect measurement features, unmeasured factors, or the categorical​
​design of the dataset [23, 39]. Even when assumptions are met, the fixed-effects formulation​
​treats ethnicity as a discrete, meaningful variable, mirroring the ontology built into the data​
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​model. In this sense, the method tests the coherence of the schema rather than the biological​
​plausibility of the categories it contains.​

​The theoretical framework also has limits. Testing whether administrative categories map onto a​
​controlled physiological signal cannot resolve whether small differences arise from category​
​design, historical residue, or the effects of standardization. As a result, while the analysis probes​
​the adequacy of existing categories, it cannot specify what alternative representational forms​
​would more faithfully capture biosocial identity.​

​9.3 Directions for Empirical and Conceptual Future Work​
​Future work must therefore proceed on multiple levels. Empirically, a more representative​
​thermal dataset spanning age, geography, device variability, and clinical contexts would allow for​
​hierarchical models capable of separating individual variation from categorical structure.​
​Longitudinal designs, following the logic of Obermeyer [12], could estimate individual baseline​
​temperatures and test whether group-level differences persist once intra-individual variation and​
​environmental context are modeled explicitly. More granular measurement, incorporating​
​additional physiological variables such as vasomotor reactivity, circadian phase, or hormonal​
​status could clarify whether subtle differences arise from physiology or sampling.​

​From an informatics perspective, alternative representational structures are needed to move​
​beyond fixed administrative categories. This may include ontologies that encode multiscalar​
​identity (ancestry, migration history, lived experience), probabilistic rather than discrete​
​membership, or narrative-linked metadata, as suggested by work in structured narrative and​
​semantic representation [29, 30]. Such approaches could preserve the interoperability required​
​for computation while reducing the risk of granting biological weight to categorical abstractions.​

​Finally, future philosophical work should evaluate how measurement practices – whether​
​thermometric or informatic – shape what counts as biological knowledge. As the history of​
​thermometry demonstrates, numerical conventions can become epistemic anchors long after their​
​empirical foundations have shifted. A reflexive informatics must therefore confront not only how​
​to measure difference, but how measurement itself produces the categories through which​
​difference becomes legible.​

​10. Conclusion​

​This study examined whether the ethnic categories encoded in a tightly controlled thermographic​
​dataset corresponded to measurable variation in facial temperature. The analyses revealed​
​statistically reliable but clinically modest differences, accounting for only a small fraction of​
​total variability. These effects do not reflect intrinsic physiological distinctions; rather, they show​
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​how categorical structures built into a dataset can generate the appearance of patterned​
​differences under conditions of high measurement precision. Once complex identities are​
​encoded as fixed computational fields, they acquire a stability and interpretive weight that​
​exceed their sociocultural origins.​

​The findings highlight a broader epistemic point: measurement is not a passive mirror of reality​
​but an active constructor of it. Statistical differences emerge from the representational choices​
​that make them possible, and in health informatics those choices determine which forms of​
​human variation become legible, actionable, or pathologized. Just as 37 °C became ‘normal’​
​through measurement practices rather than universal physiology, so too may the demographic​
​categories that shape modern analytics. Recognizing this symmetry is essential: otherwise​
​today’s informatics risks repeating the epistemic blind spots of 19th-century thermometry. In this​
​sense, the architecture of our data systems becomes the architecture of our truths, and designing​
​more responsive and inclusive informatics requires not only better instruments but categories​
​capable of capturing human diversity without reifying it.​

​11. Computational Reproducibility​

​To support transparency, reproducibility, and independent verification, all data-processing steps​
​used in this analysis are fully documented in the project’s GitHub repository:​

​https://github.com/anais-lohier/bis560-aml276/tree/main​

​Because several preliminary cleaning steps were performed in Excel, the repository includes​
​three sequential versions of the dataset: (1) the original raw file, (2) the Excel-processed version​
​with filtered variables and averaged temperature fields, and (3) the R-processed analytic dataset​
​used for the final models. This provides a clear audit trail from raw input to analytic output.​

​All statistical analysis and data wrangling were conducted in R (RStudio), with preliminary​
​variable filtering and averaging performed in Microsoft Excel. The repository contains all R​
​scripts used for data cleaning, missingness evaluation, and summary statistics. Since both the​
​original dataset and the full analytic workflow are publicly available, the results can be​
​independently replicated without relying on undocumented steps or proprietary data.​
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​preparation of this work. Their use was restricted to generating draft R code for data​
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​formatting, language refinement, and workflow efficiency. AI tools did not conduct the research,​
​identify or formulate the research question, select data sources, design the study, determine​
​analytic methodology, perform statistical reasoning, or interpret results. All analytical decisions,​
​modeling choices, interpretations, and substantive conclusions are the intellectual work of the​
​author. All AI-assisted outputs were critically reviewed, re-edited, and validated by the author to​
​ensure accuracy, coherence, and scientific integrity.​
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​Appendix A​

​Figure A.1 Early Conceptualizations of Temperature​
​Haslerus’s table represents one of the earliest known numerical temperature scales. It arranges​
​nine degrees of heat and cold symmetrically around a neutral midpoint (marked 0),​
​corresponding to the “equal temperature” of the human body in Galenic theory. The rightmost​
​column shows calculated celestial and terrestrial values, while the central columns record the​
​numerical progression from the extremes (fourth degree of heat at the equator to fourth degree of​
​cold at the pole). Each step corresponds to one-third intervals, linking climate, geography, and​
​physiology.​

​Source: Joannes Haslerus, De Logistica Medica [6], reproduced in F. Sherwood Taylor [2].​
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​Figure A.2 Early Tools for Experimental Thermometry​
​Santorio Santorio’s thermoscopium represents one of the earliest known applications of​
​temperature measurement in clinical observation. Built around 1612-1626, his device consisted​
​of a glass bulb and a long, narrow stem partially submerged in water or alcohol. As air inside the​
​bulb expanded or contracted with temperature changes, the liquid in the stem rose or fell,​
​allowing visible comparison rather than calibrated measurement. The accompanying pulsilogium​
​(pendulum) shown on the left of the illustration was used to time the patient’s pulse and​
​respiration, demonstrating Santorio Santorio’s effort to unify bodily observation with​
​quantifiable rhythm. These instruments reflected a new epistemic ideal in seventeenth-century​
​medicine, being that health and disease could be rendered measurable through instruments rather​
​than perception alone.​

​Joannes Haslerus, De Logistica Medica [6] as reproduced in F. Sherwood Taylor [2].​
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​Appendix B​

​Figure B.1 Transformation of Biopsychosocial Reality into Computable Medical Data​
​This diagram illustrates how complex biopsychosocial reality is progressively transformed into​
​standardized, computable data within health-informatics systems. Each step – from lived​
​experience, to biomedical framing, to data abstraction – filters out nuance and embeds​
​institutional assumptions into the resulting categories. The recursive structure of the diagram​
​highlights that once categories are encoded, they continue to shape downstream interpretation,​
​system design, and the patterns analytics can detect. This visual foregrounds the central argument​
​of the paper: that measurement and representation co-produce the forms of human difference that​
​become visible in clinical data.​
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​Appendix C​

​Figure C.1 Facial Regions of Interest​
​Standardized facial regions of interest (ROIs) used in the thermographic study by Zhou et al.​
​Temperatures were extracted from delineated zones – including the inner canthi, forehead, oral​
​region, and whole-face maximum – to evaluate which sites most reliably track core temperature.​
​This image demonstrates how anatomical standardization reduces measurement variability and​
​why the two regions used in the present analysis (T_max and T_CEmax) are methodologically​
​preferable.​

​Data reproduced from Zhou [19].​
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​Figure C.2 Device Performance Comparison (IRT-1 vs. IRT-2)​
​Comparative performance metrics for the two infrared thermography devices (IRT-1 and IRT-2)​
​used in the original study. IRT-2 shows stronger correlations with core temperature and higher​
​AUC values for both T_max and T_CEmax, especially under controlled conditions. This​
​comparison motivates the analytic decision to restrict the present study to IRT-2 measurements,​
​ensuring that observed differences are less influenced by instrument noise and more reflective of​
​the dataset’s categorical structure.​

​Data reproduced from Zhou [19].​
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​Table C.3 Demographics of Study Subjects​
​This table presents the demographic composition of the original Zhou et al. dataset, including​
​age range, gender distribution, and ethnic categories for both IRT systems. These distributions​
​contextualize the analytic restrictions despite strong procedural control.​

​Data reproduced from Zhou [19].​
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​Appendix D​

​Table D.1 Ethnicity Distribution of Subset​
​The following table summarizes the ethnic composition of the analytic subset. Counts and​
​percentages are presented to document the distribution of participants retained after age filtering​
​and variable selection.​
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​Table D.2 Descriptive Statistics​
​The following provides summary statistics for both temperature measures across ethnicity​
​groups. Mean values and standard deviations are shown to document the central tendency and​
​variability of the analytic variables used in the ANOVA models.​
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​Table D.3 Missingness across Rounds​
​This table reports the number and percentage of missing observations for each of the four​
​measurement rounds for both temperature variables. This table provides transparency about​
​completeness prior to averaging round-level values.​

​Table D.4 Missingness after Averaging​
​The following shows missingness for the final analytic variables after round-level temperatures​
​were averaged. All retained variables have complete data, confirming that the analytic subset​
​used for ANOVA contains no missing observations.​
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​Appendix E​

​Figure E.1 Statistical Assumptions for T_CEmax_mean​
​This figure summarizes the ANOVA diagnostic checks for T_CEmax_mean, including a Q-Q​
​plot of residuals, the Shapiro-Wilk normality test, and the Brown–Forsythe test for homogeneity​
​of variances. These outputs document whether the model meets the required assumptions.​
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​Figure E.2 Statistical Assumptions for T_max_mean​
​This figure summarizes the ANOVA diagnostic checks for T_max_mean, including the residual​
​Q-Q plot, Shapiro-Wilk normality test, and Brown-Forsythe test for homogeneity of variances.​
​These outputs document whether the model satisfies the assumptions required for a one-way​
​ANOVA.​
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​Appendix F​

​Table F.1 ANOVA Analysis and Visualization for T_CEmax_mean​
​This section provides the complete ANOVA results for T_CEmax_mean, including the​
​F-statistic, p-value, and η² effect size, followed by a visualization of group means with 95%​
​confidence intervals. Together, the statistical output and plot document the underlying results and​
​illustrate the magnitude and direction of between-group differences in inner-canthus temperature.​
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​Table F.2 ANOVA Analysis and Visualization for T_max_mean​
​This section provides the complete ANOVA results for T_max_mean, including the F-statistic,​
​p-value, and η² effect size, followed by a visualization of group means with 95% confidence​
​intervals. Together, the statistical output and plot present the detailed results and illustrate the​
​pattern and magnitude of between-group differences in full-face maximum temperature.​


