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Abstract

Background: The canonical value of 37 °C reflects a historical convention rather than a
universal biological norm, yet it continues to be treated as one. Health-informatics systems
reproduce similar conventions by encoding ethnicity as fixed administrative categories whose
analytic meaning is uncertain. How such inherited labels relate to temperature measurements is
largely unexamined, particularly with respect to the ways data structures themselves shape what
appears as variation.

Objective: To assess whether administratively encoded ethnicity categories generate measurable
temperature differences under highly standardized measurement conditions, and to evaluate what
this indicates about their role and limitations within informatics classification systems.

Methods: A secondary observational analysis was conducted using publicly available infrared
thermography data collected under tightly controlled conditions. The analytic sample was
restricted to adults aged 18-30 and to the two most accurate facial temperature measures —
full-face maximum temperature (T_max) and inner-canthus temperature (T_CEmax) — recorded
using Infrared Cameras Inc. (ICI) infrared thermometry device. One-way fixed-effects ANOVA
assessed mean differences across six encoded ethnic categories, with full assumption checks and
effect-size estimation.

Results: Small but statistically reliable differences were detected for both inner-canthus
temperature (T _CEmax) (F(5, 882) =6.73, p = 3.64x 107, 1n? = 0.04) and full-face maximum
temperature (T _max) (F(5, 882) =4.15, p = 0.00099, n*> = 0.02). ANOVA assumptions were
adequately met for both outcomes.

Conclusions: Ethnicity categories encoded in the dataset corresponded to modest temperature
variation, not evidence of biological distinction. Instead, the findings illustrate how
administrative categories can become statistically consequential under high measurement
precision, highlighting the need for refined ontologies, personalized baselines, and multi-scale
modeling in health-informatics design.
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1. Introduction

1.1 Background

For more than a century, 37 °C has defined “normal” body temperature, yet this value persists
more by convention than biological universality. Wunderlich’s nineteenth-century measurements
[1], drawn from a narrow clinical population and specific procedural norms, stabilized 37 °C as a
benchmark even though contemporary evidence shows that temperature varies by age, sex,
circadian timing, measurement site, and individual physiology. Temperature thus functions as a
paradigmatic biometric: historically contingent, clinically foundational, and shaped by the
instruments and standards that make it measurable. A similar logic governs ethnicity in
health-informatics systems, where complex identities are compressed into administrative
categories so they can enter data schemas and analytic pipelines. Once encoded, both
temperature norms and ethnicity labels acquire an interpretive authority that exceeds their
empirical grounding, influencing how biomedical systems classify bodies and render certain
distinctions visible.

1.2 Scientific Problem

Contemporary informatics systems treat temperature and ethnicity as stable, self-evident fields,
yet it remains unclear whether these encoded categories generate discernible structure in
physiological measurements or merely reflect the architecture of the data model. This project
tests whether administratively defined ethnicity categories correspond to measurable variation in
facial temperature under tightly controlled imaging conditions. Several challenges complicate
this question: ethnicity in informatics is an institutional abstraction with uncertain
correspondence to phenotype or ancestry; surface temperature fluctuates with vasomotor tone,
perfusion, evaporative cooling, and ambient conditions even under standardized protocols; and
infrared thermography is sensitive to calibration, emissivity assumptions, and device
performance. When environmental and procedural variability are minimized, however, any
residual differences across encoded categories become analytically informative not as indicators
of physiology, but as reflections of how data systems partition human variation.

1.3 Objective

The objective of this study is to determine whether the ethnicity categories encoded in a
rigorously standardized thermographic dataset correspond to measurable variation in two
validated facial temperature measures (T_max and T CEmax). More broadly, the study
examines how administratively defined demographic fields behave within health-informatics
analyses and what their statistical patterns imply for classification, interpretation, and
decision-support systems that rely on routinely collected demographic data. Because the dataset
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is publicly available and the analytic workflow is fully documented, the results are reproducible
and available for independent verification.

1.4 Overview

This paper is organized to connect the historical development of thermometry with the
informatics systems that encode human difference. Sections 2 and 3 together constitute the
literature review. Section 2 traces how temperature became a clinical and epistemic object
through evolving instruments, modern device standards, and the constraints of infrared
thermography. Section 3 shifts to health informatics and examines how measurement practices
and data models translate complex biosocial identities into computable categories. Section 4
describes the thermographic dataset and analytic constraints, and Section 5 outlines the
methodological and philosophical rationale for using ANOVA to interrogate its categorical
structure. Section 6 presents the empirical results, and Section 7 interprets them across clinical,
informatics, epidemiologic, and philosophical domains. Section 8 offers representational and
methodological recommendations, and Section 9 discusses limitations and future directions. The
paper concludes that the small but detectable differences observed across encoded ethnic
categories reflect not physiology but the representational and measurement structures through
which contemporary informatics makes human variation legible.

2. Thermometry: Devices, Error, and the Interpretation of
Temperature

2.1 Fundamental Origins

Thermometry is the quantitative measurement of human body temperature using instruments that
register the thermal energy at the site of contact, providing an objective physiological signal for
diagnosis and observation. Its validity depends on the location of measurement, the physics of
heat transfer, and the accuracy and calibration of the device, since thermometers detect only local
heat and are sensitive to technical and environmental factors [1-5].

From Sensory Judgment to Numerical Authority

The history of thermometry traces not merely the invention of an instrument but the
transformation of medical knowledge itself from a qualitative observation to numerical authority.
The idea that heat could reveal the hidden order of life long predated the thermometer. In
antiquity, Galen had described organs as relatively “hot” or “cold,” classifying parts of the body
by their perceived warmth, but only through the senses [2]. In the late sixteenth century, Joannes
Haslerus’s De Logistica Medica (1578) transformed this qualitative legacy into calculation [6].
Haslerus argued that medicine must be restored to the precision of number and proportion,
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proposing that each body possessed a natural degree of heat or cold determined by latitude,
season, and age, and could be computed mathematically — such that an inhabitant of Antwerp, for
example, would be “of the first degree of cold” [2, 6]. A schematic from Haslerus’s system is
reproduced in Appendix A.1. In essence, Haslerus helped reposition medicine toward numerical
scale and mathematical regularity.

By the seventeenth century, this confidence in quantification had become a defining feature of
natural philosophy. As Shryock observed, early iatromathematicians believed that “phenomena
perceptible only to reason” could be revealed through measurement [7]. Santorio (1561-1636)
exemplified this idea through early instruments aimed at quantifying hidden physiological
processes [1, 2]. His experiments marked one of the first sustained efforts to measure such
processes, aiming to render the body’s fluctuations legible (see Appendix A.2).

Early Experimental Thermometry

Across the eighteenth and early nineteenth centuries, thermometry shifted from a philosophical
curiosity to a reproducible clinical method. Anton de Haen demonstrated that fever followed a
daily course through repeated bedside measurements. In the nineteenth century, Jacques Breschet
and Antoine Becquerel showed that inflamed tissues were warmer than healthy ones, and Gabriel
Andral sought to “map out the courses of temperature” in disease, marking the transition from
isolated readings to patterned, temporal observation [1, 2].

These cumulative investigations converged in the work of Carl Reinhold August Wunderlich,
whose Medical Thermometry and Human Temperature (1871) systematized thousands of cases
and millions of observations [1]. Wunderlich defined 37 °C as the mean temperature of health
and 38 °C as the threshold of fever, asserting that “thermometry in disease is an objective,
physical method of investigation.” His manual provided precise procedural instructions:

“The instrument may be centigrade or Fahrenheit, but it must be accurate. If self-registering, the
nurse can use it at stated times, and the physician can read it at the next visit. The bulb is to be
inserted in the axilla, previously dried if moist from perspiration, just beneath the fold of the
pectoralis major muscle... It is left in situ... for eight to ten minutes... the degree is then read off
and recorded on a blank diagram.” [1]

Critical Reflection

Ironically, these meticulous directions reveal the persistence of subjectivity within an enterprise
devoted to its elimination. As Engel later observed, “the observational act is a unitary deed of
which our choice is an active subjective component” [8]. Temperature readings still depended on
touch, timing, posture, and interpretation, and without a reliable external reference, precision
offered little guarantee of accuracy. The mercury-glass thermometers of the period routinely
drifted and could not be easily checked against a stable standard, leaving even “standardized”
measurements open to quiet error [9].
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Early Considerations of Ethnicity

In the 1850s, efforts to relate temperature to human variation brought ethnicity into view, but the
evidence was limited and largely anecdotal. Wunderlich briefly suggested that observed
differences might reflect factors such as race or climate, yet he provided almost no empirical
support for this claim [1]. His only substantive evidence came from a passing remark in
Livingstone s Travels in South Africa, where Livingstone recorded his own oral temperature at
100 °F and that of local inhabitants at 98 °F [10]. Wunderlich immediately undercut its authority,
reminding readers that “a single observation of temperature is always an imperfect and
unsatisfactory standard” [1]. The episode shows how tenuous the earliest attempts were to link
body temperature to purported ethnic or racial differences. Despite later recognition of wide
inter- and intra-individual variation [3, 4, 11, 12], Wunderlich’s number has endured, shaped as
much by the authority of his method as by the universality of his sample [1].

2.2 The Contemporary Thermometric System

Contact and Infrared Modalities in Modern Thermometry

Modern clinical thermometry relies on two broad modalities: contact instruments (such as
mercury-in-glass and bimetallic thermometers) and optical systems, most prominently infrared
thermography (IRT). As Raiko and colleagues note, each modality detects only the thermal
signals available through its physical interface, thereby defining what can be measured directly,
what must be inferred, and where systematic error may enter [13].

IRT operates differently from contact methods. Rather than measuring the temperature of internal
tissues or even the probe-skin interface, it detects infrared radiation emitted from the skin
surface, a signal shaped by skin emissivity, local blood flow, and the temperature gradient
between body and environment [13]. Because emissivity expresses how closely a surface
behaves like an ideal blackbody, the accuracy of any inferred temperature depends on its
stability. Clinical IRT systems generally assume a skin emissivity of approximately 0.98, and
even small deviations from this value can generate errors approaching 1 °C, a range large enough
to alter fever screening outcomes [13].

Optical Pathways, Pigmentation, and the Stability of the Thermal Signal

A central question for surface-based thermometry is whether skin pigmentation alters infrared
temperature readings. Empirically, the answer is clear: human skin emissivity does not differ
meaningfully across pigmentation levels. In a controlled study of 65 adults representing a wide
range of Fitzpatrick types, emissivity values clustered tightly between 0.96 and 0.99 with no
significant group differences [14]. A larger study of 289 male volunteers (including Caucasian,
Black, and individuals of mixed ancestry) likewise found that melanin content did not change
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emissivity or reflectivity when measurements were taken under standardized conditions with a
clinical infrared thermometer [15].

Even so, small but systematic temperature differences still emerge across pigmentation groups,
and these arise through mechanisms other than emissivity. In the 289-participant study, for
example, the contrast between temple and wrist temperatures was slightly greater among
participants with darker skin, despite uniform devices, fixed emissivity parameters, and constant
measurement distance [15]. Similar patterns appear in more recent controlled cooling
experiments, where identical thermal perturbations produced apparent temperature differences of
nearly 1 °C between the lightest and darkest skin tones [17]. Because emissivity appears stable
across skin tones [14], these discrepancies are more plausibly attributable to non-emissivity
optical and device-processing factors than to intrinsic thermoregulatory physiology, though this
dataset cannot distinguish these mechanisms directly [3].

These optical and device effects take on added significance in datasets that encode ethnicity
rather than direct measures of pigmentation. Constitutive skin color is a composite trait shaped
by melanin content, genetic ancestry, environmental exposure, and adaptive responses [16].
Although ethnicity categories do not capture this complexity, in many populations they correlate
broadly with skin pigmentation. As a result, pigmentation-linked measurement artefacts can
become mapped onto administrative ethnic labels, creating the appearance of group-level
temperature differences even when core physiology is the same.

Surface Measurement, Core Physiology, and the Limits of Inference

Infrared thermography measures surface temperature, not the tightly regulated core temperature
that clinical practice treats as a physiological constant. Core temperature remains near 37 °C
through hypothalamic control of heat production and loss, whereas surface temperature varies
with local perfusion, evaporative cooling, ambient conditions, and the geometry of the
measurement site [3, 4]. Even under ideal protocols, the skin does not provide a direct reading of
internal thermal state.

Technical factors introduce additional variability. Infrared cameras differ in calibration stability,
sensor sensitivity, thermal resolution, and in the algorithms used to convert infrared radiation
into a displayed temperature [4, 5]. Minor discrepancies in calibration or signal processing can
produce shifts on the scale of tenths of a degree — small in absolute terms but large enough to
complicate interpretation when researchers are examining subtle group differences. Even when
emissivity is fixed and pigmentation effects are minimized, device behavior still contributes
noise that is difficult to separate from natural physiological fluctuations.

Because surface infrared measurements integrate thermodynamic, environmental, and
device-related influences, they do not directly represent core physiology. When group differences
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are small, their meaning becomes difficult to determine since they may reflect these influences
rather than biological variation. Such differences must therefore be interpreted with caution and
cannot be presumed to indicate true thermoregulatory change.

2.3 Standards, Calibration, and Data Structures

Early standards did little to address the fragility of clinical thermometry. As experimental
approaches proliferated, instruments remained prone to drift, and twentieth-century regulations
offered only modest safeguards. Standard mercury-glass thermometers were legally required to
display 96-106 °F (a range far wider than clinicians needed) and restoring the column to a true
baseline often required specialized equipment [9]. A 1975 evaluation found that seven of
twenty-five devices (28%) exceeded allowable accuracy limits, substantiating the claim that
national standards such as CS1-42 and CS1-52 constrained manufacturers without ensuring
clinical reliability [9]. Numerical readings thus entered practice on the authority of instruments
whose calibration and stability were never fully secured.

Modern regulations attempt to remedy these gaps. ISO 80601-2-56 specifies accuracy ranges for
clinical thermometers, typically 0.3 to 0.4 °C, and ASTM E1965 defines permissible errors for
infrared devices [5]. Yet achieving these limits in routine practice is difficult: infrared and
electronic sensors must perform across heterogeneous conditions even though their accuracy
depends on ambient temperature, distance, angle, emissivity, and component stability. All such
instruments are susceptible to material fatigue and calibration drift and require periodic
verification against reference standards [4]. Recent hospital evaluations show that while contact
devices often meet expectations, over half of non-contact forehead and ear thermometers fail
ISO/ASTM criteria even under controlled conditions, with uncertainty bands that exceed
clinically meaningful thresholds [5].

The limitations of these devices became widely visible during the COVID-19 pandemic, when
the World Health Organization (WHO) endorsed thermal imaging systems and handheld infrared
thermometers that were rapidly deployed for mass screening [18]. Many were installed without
blackbody reference targets and relied on inconsistent facial sites, which produced large
variability and frequent false negatives [18, 19]. Subsequent large-scale IRT evaluations showed
that this instability was not a failure of particular models but a predictable consequence of using
precision instruments outside the tightly controlled conditions required to maintain reliable
calibration [20].

These device-level constraints have direct analogues in the informational substrate into which
clinical measurements are encoded. Medical Event Vectors (MEVs) store “symptoms, signs,
laboratory treatments, diagnoses, and virtually all other medical data” in formats optimized for
durability and retrieval rather than analytic depth, compressing clinical nuance and allowing
systematic errors to persist [21]. Similar losses occur when continuous variables, such as



Lohier 7

99 ¢¢

temperature and blood pressure, are recoded into ordinal labels (“mild,” “moderate,” “severe”
that facilitate documentation but discard granularity [19]. And in laboratory medicine, where
nearly 80 percent of results pass through automated systems without direct human interpretation,
the structure of data fields often exerts more influence on downstream analysis than the original

biological signal [22].

Calibration, whether mechanical or semantic, governs how closely a measurement reflects the
phenomenon it is meant to represent. A thermometer may meet formal accuracy limits yet still
blur physiologically meaningful variation, and a coding scheme may satisfy documentation
requirements while removing distinctions that matter for analysis. Bias, drift, or compression
introduced at either level carries forward into downstream interpretation and shapes estimates of
normality, fever thresholds, and the apparent structure of demographic categories. Devices and
data structures form a measurement architecture that makes temperature data usable while also
defining the limits of what can be inferred from it.

2.4 How Thermometry Constructed Normality and Medical Evidence

The clinical importance of thermometry is not limited to detecting fever; it lies in how
temperature became a vital sign that organizes medical judgment. Contemporary practice treats
body temperature alongside heart rate, blood pressure, and respiratory rate as one of four
principal indicators of “fundamental body functionality and efficiency” [3]. Normal body
temperature (normothermia) is understood as a prerequisite for proper physiological function,
whereas sustained hyperthermia or hypothermia perturbs metabolism, impairs cognition, and can
cause tissue damage [3]. Yet, as these historical foundations suggest, the very idea of a “normal”
temperature is not inherent to physiologys; it is a historical construct shaped by the instruments
and conventions that first defined its boundaries.

Wunderlich’s benchmark was not merely descriptive; it was normative. Statistical averages
became criteria against which individuals were judged. What counted as “normal” depended on
the specific instruments and measurement sites that supplied the data. As Canguilhem noted,
instruments “give a result,” but diagnostic value comes only through interpretation [23].
Temperature becomes informative when clinicians connect a numerical value to
thermoregulatory physiology, site selection, the patient’s condition, and the question at hand. Yet
the 37 °C convention persisted because it offered an apparently objective standard at a time when
medicine sought numerical clarity.

Clinical reviews emphasize that infrared thermography nonetheless occupies a distinctive role in
modern temperature assessment. IRT can detect very small thermal differences and visualize
spatial patterns linked to inflammation, perfusion changes, neuropathy, and other
surface-manifesting processes [24]. Its interpretive value, however, depends on recognizing its
limits: surface temperature is shaped by radiation, convection, local blood flow, and ambient
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conditions, whereas core temperature is kept within a narrow hypothalamic range. Real-time
readings support screening and monitoring, but isolated values provide limited physiological
insight without contextual information about measurement conditions [3]. Each thermometric
device reveals only one layer of the body’s thermal physiology, and clinical meaning arises only
when that device’s constraints are taken into account. Through this a paradox emerges, being
“the more facts we learn the less we understand,” notably when complexity grows faster than the
models used to interpret it, a caution that applies equally to high-resolution thermal data [25].

Thermometry thus performed a double operation: it rendered the body legible as a sequence of
numerical values and organized those values into distributions that could be labeled “normal,”
“febrile,” or “hypothermic.” From Galen’s qualitative assessments of heat and cold to the
threshold-based rules of contemporary screening, temperature became something that could be
calculated, compared, and categorized. The authority of numerical precision emerged not only
from physiology but from the instruments and practices that made temperature measurable,
creating an architecture of normality in which devices produced readings, standards defined
acceptable error, and thresholds converted those readings into judgments. In this way,
measurement practices do not simply record normality; they help construct it.

3. Measurement, Representation, and the Ontology of
Human Difference in Health Informatics

3.1 Introduction

The same measurement logic that transformed bodily variation into numerical form now
underlies contemporary informatics. This section examines how that logic structures categories
of human difference, a process illustrated in Appendix Figure B.1. Because measurement
practices stabilize distinctions, tracing their logic clarifies how informatics inherits and amplifies
the classificatory assumptions embedded in earlier forms of quantification.

3.2 The Datafication of Human Diversity and Resulting Ontological Constraints

Genetics was one of the earliest attempts to translate human variation into a computable form.
Even after population genetics showed that most diversity lies within groups [26], researchers
continued to rely on broad labels such as Black, White, and Asian — categories applied “without
definition” yet carrying “powerful ramifications beyond the domain of science” [27, 28].

When ethnicity is formalized as a data field, its lived complexity is reduced so it can function
within structured analytic systems. In electronic health records, clinicians select from a narrow
menu of categories that must substitute for far broader identities and contexts. This simplification
reflects the logic of data infrastructures, which rely on stable, computable entries to function
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[29-32]. But these same structures narrow the space of interpretation, directing attention toward
predefined distinctions rather than those that emerge in practice.

The core issue is not simply that diversity becomes a variable, but that the variable acquires
ontological authority. Once formalized, categories become part of the conceptual terrain the
system treats as self-evident [27], shaping how future distinctions are built and limiting which
questions can even be asked. As Engel, drawing on Einstein notes, moving to a broader
framework does not erase earlier structures; it reveals their scope and limits [8]. In this way,
informatic ontologies do more than encode categories, they naturalize them, embedding prior
classificatory assumptions into the foundations of new models of human variation.

3.3 The Politics of Representation in Normality

Informatics does not just generalize from populations rather it generalizes from those populations
that are successfully encoded. Administrative categories function as gates to analytic visibility,
determining which bodies can contribute to norms and which are structurally absent from their
construction. As Birney notes, genetics continues to operationalize racialized groupings even
while rejecting their biological coherence, because such categories remain indispensable to data
organization and comparison [33]. Once embedded, these groupings stand in for populations they
cannot fully represent, yet the statistical patterns they yield circulate as if they were population
truths. Norms produced in this way are therefore not collective baselines but artifacts of selective
inclusion, shaped by sampling asymmetries, category design, and institutional convenience.
Canguilhem’s critique of the norm takes on a new register here: informatics does not merely
confuse averages with ideals, it stabilizes partial representations as reference points that govern
interpretation downstream [23]. Engel’s concern thus reappears not at the level of clinical
judgment, but at the level of data architecture itself, where what cannot be cleanly encoded fails
to register as difference at all [8, 31].

Critical Reflection

Population genetics complicates this. Bryc found over 99% correspondence between
self-reported and genetic ancestry in a large U.S. dataset [34]. Social categories can align with
biological and historical lineages at the population level, much as population-level temperature
averages can meaningfully describe trends. But correspondence does not confer biological
essentialism; a mean does not make a norm [23]. Informatics must therefore navigate categories
that are socially constructed and statistically patterned without collapsing one into the other.

Representational Stakes

Contemporary informatics thus operates through representational choices that shape which forms
of human difference can appear as analytic structure. Rather than resolving these questions at the
level of theory, they can be examined by observing how encoded demographic categories behave
within a concrete dataset. The thermographic dataset analyzed here serves as a case through
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which to trace how administratively defined ethnicity functions once it is fixed as a
computational field. The following section introduces the data and materials used to examine
how these representational commitments become visible in empirical analysis.

4. Data and Maternials

4.1 A Note on Secondary Data Analysis

Secondary analysis imposes its own methodological constraints. As Sun argues, such work must
be guided by a prespecified analytic plan, since flexible exploration risks data dredging and
inefficient inference [35]. Within that framework, the empirical question here is intentionally
narrow: do the encoded ethnicity values produce any measurable temperature differences under
highly controlled conditions. Unlike primary studies, secondary analyses must accept the
assumptions, variable definitions, and measurement decisions already built into the dataset. This
project therefore adopts a transparent and tightly bounded analytic strategy, not to estimate
population effects, but to examine how the dataset’s representational choices structure the
patterns that emerge under controlled analytic conditions.

4.2 About the Original Data

This dataset originates from a clinical thermographic study evaluating the accuracy of infrared
thermographs (IRTs) for detecting elevated body temperature. Researchers collected facial
thermal and visible images alongside oral temperature readings from more than 1,100
participants using two systems, a FLIR device (IRT-1) and an Infrared Cameras Inc. (ICI) device
(IRT-2). All data were de-identified and collected under protocols approved by the U.S. Food and
Drug Administration (FDA) and Institutional Review Boards (IRBs) [19].

The study was motivated by ongoing uncertainty about the calibration and clinical accuracy of
IRT systems. Although international standards such as IEC 80601-2-59:2017 provide guidance
for laboratory evaluation of fever-screening devices, there are no consensus methods for
assessing clinical accuracy, and existing technical reports (for example, ISO/TR 13154:2017)
outline deployment practices rather than validation procedures [19]. The investigators therefore
implemented a standardized imaging protocol designed to reflect real-world variability in
devices, subjects, and environmental conditions.

Strict quality controls governed data collection. Participants acclimated indoors for 15 minutes,
and measurements were taken within a narrow ambient temperature range. Subjects were
excluded if their two oral temperature readings differed by more than 0.5 °C or if only one
reading was recorded — common indications of motion, improper probe placement, or recent
ingestion of hot or cold substances [20]. Of 1,115 enrolled individuals, 6 had incomplete records
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and 56 were removed due to inconsistent oral temperatures. Image-level exclusions for motion
artifacts yielded final samples of 1,020 subjects for IRT-1 and 1,010 for IRT-2 [19].

Facial regions of interest were fixed across participants (Appendix C.1), reducing variability
from inconsistent measurement sites and supporting direct comparison of the temperature
variables analyzed here.

4.3 Why this Dataset?

This dataset is well suited to the scientific problem because it isolates measurement noise to an
unusual degree: participants were acclimated, imaging conditions were standardized, and the two
most accurate temperature variables (T _max and T CEmax) demonstrated strong agreement
with core temperature. By minimizing environmental, device, and procedural variability, the
dataset limits non-physiological sources of temperature variation. This controlled context
therefore allows any observed differences across encoded ethnic categories to be interpreted
chiefly as features of the dataset’s classificatory structure rather than artifacts of inconsistent
measurement.

A further advantage is that the dataset is fully publicly accessible through PhysioNet, a widely
used National Institute of Health (NIH)-supported repository for open clinical data [20]. Public
availability ensures that all analyses presented here can be independently reproduced or
extended, and allows the methodological choices of this project — including variable selection,
preprocessing, and statistical modeling — to be verified directly from the original source. This
openness strengthens the scientific validity of the study by ensuring transparency and facilitating
replication, both of which are essential for evaluating whether the observed patterns arise from
the data itself or from analytic interpretation.

4.4 Variables and Preprocessing

Variable Selection (T_max and T_CEmax)

The analysis focuses on two validated facial temperature variables: T max, the full-face
maximum temperature, and T_CEmax, the maximum temperature in the inner canthus region.
These measures showed the strongest agreement with oral temperature in the original evaluation
(r=0.78-0.79; AUC = 0.95-0.97) [19], with diagnostic performance summarized in Appendix
C.2. Both variables were averaged across four sequential imaging rounds to reduce random noise
and improve reliability.

The choice of these sites is also supported by physiological and thermometric considerations.
Surface temperature varies widely across the body, and each measurement site reflects different
patterns of conduction, convection, radiation, and evaporative heat loss [4]. The inner canthus is
less exposed to ambient variation and is perfused by vessels that track core temperature more
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closely, which makes it one of the most stable anatomical sites for infrared measurement [3]. In
contrast, forehead-based readings are more sensitive to emissivity changes, camera angle,
distance, and environmental conditions, factors that have been shown to reduce accuracy in
non-contact thermometry [5]. Restricting the analysis to T max _mean and T CEmax_mean
therefore minimizes site-specific noise and aligns with established evidence on which facial
regions yield the most dependable thermal information under controlled conditions.

Device Selection (IRT-2)

Although both infrared thermographs performed well, IRT-2 showed higher accuracy, better
calibration stability, and lower spatial noise, particularly for the T max and T CEmax variables
(for example, T _max AUC = 0.968 for IRT-2 vs. 0.951 for IRT-1) [19]. Because the analysis
depends on detecting small between-group differences, selecting the more precise device reduces
the likelihood that observed patterns reflect instrument variability rather than structure in the
data.

The dataset provides no calibration records for either device, so calibration quality cannot be
independently assessed. The analysis therefore relies on the performance metrics reported in the
original evaluation, which identified IRT-2 as the more accurate system under the study’s
standardized conditions [19]. External comparisons support this choice. Independent studies find
that ICI devices outperform comparable FLIR systems in accuracy, precision, and the detection
of fine-grained spatial temperature differences [36]. Using IRT-2 therefore provides the strongest
available measurement basis for the present analysis. Full device-performance comparisons
appear in Appendix C.2.

Age Restriction (18-30)

Because the dataset is overwhelmingly composed of young adults, the analysis is restricted to
participants aged 18 to 30. This reflects the demographic structure of the sample rather than a
theoretical boundary because roughly 94 percent of participants fall within this range, while very
few are older than 40 (Appendix C.3), and the authors note that the cohort is not representative
of the general population [20]. Age influences thermoregulation in that older adults tend to show
slightly lower and more variable core temperatures, but the small number of older individuals in
this dataset makes it impossible to model such differences reliably [37]. Restricting the analysis
to the age range the dataset meaningfully represents therefore reduces physiologic heterogeneity
and prevents instability from underpowered subgroups, which helps preserve statistical validity
and interpretability.

Ethnicity Variable

Ethnicity is analyzed exactly as recorded in the dataset, which lists six administratively defined
categories: Asian, Black or African American, Hispanic/Latino, White, American Indian or
Alaskan Native, and Multiracial. Because the original documentation does not describe how
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these labels were defined or collected [20], the analysis treats them as fixed administrative codes
rather than validated sociocultural or phenotypic constructs. Full distributions appear in
Appendix C.3. Infrared temperature measurements can be influenced by phenotypic factors such
as skin pigmentation [15, 17], yet the dataset includes neither Fitzpatrick skin type nor any direct
measure of skin tone [20]. Without these variables, pigmentation-related optical effects cannot be
evaluated independently and would be absorbed into the administrative categories if they exist.
For this reason, any observed group differences should be understood as features of the dataset’s
representational structure rather than evidence that the encoded labels reflect physiologically
meaningful distinctions.

A Note on Gender

Gender is retained exactly as recorded in the dataset (Female and Male), but it is not
incorporated as a primary analytic variable. Although gender can influence baseline temperature
through hormonal, vascular, and circadian factors [1, 5], including it here would introduce
additional physiological variability without advancing the central analytic question. The goal of
this study is to assess how ethnicity, as encoded in the dataset, behaves under tightly
standardized thermographic conditions. Stratifying the analysis by both gender and ethnicity
would multiply subgroup combinations and substantially reduce stability within several already
small ethnic categories, as shown in Appendix C.3. For these reasons, gender is preserved
descriptively but excluded from the main between-group comparisons.

4.5 Sample Characteristics

After applying the analytic restrictions — using IRT-2 measurements, retaining only T _max and
T CEmax, averaging across four imaging rounds, and limiting the sample to participants aged
18-30 — the final dataset included 888 individuals with complete demographic information.

Ethnic composition of the analytic subset showed heterogeneous but unevenly distributed
representation (Table D.1). Just over half of participants identified as White (50.23%), followed
by Asian (25.00%), Black or African American (13.96%), Hispanic/Latino (5.74%), Multiracial
(4.73%), and American Indian or Alaskan Native (0.34%). These proportions provide necessary
context for interpreting between-group comparisons, particularly for categories with limited
sample sizes.

Mean temperature values showed modest variation across ethnicity groups for both infrared
measures. Inner-canthus temperatures (T _CEmax_mean) ranged from approximately 35.57 °C to
35.88 °C, with standard deviations between 0.14 °C and 0.68 °C. Full-face maximum
temperatures (T_max_mean) showed a similar pattern, ranging from 35.99 °C to 36.19 °C, with
standard deviations between 0.05 °C and 0.66 °C. Because mean values can obscure extreme
observations, minimum and maximum values were also examined to evaluate potential outliers.
Across all groups, the observed ranges fell within physiologically plausible bounds (roughly
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34-39 °C), and no group exhibited disproportionately high or low extremes. The narrow
within-group ranges support the interpretation that no anomalous measurements materially
influenced the descriptive statistics. Detailed numerical summaries for each group are provided
in Appendix D.2.

Data completeness was also evaluated both before and after deriving participant-level
temperature means. Before averaging, the proportion of missing values across the four
measurement rounds ranged from 5.35% to 13.08% (Table D.3). After averaging, all analytic
variables contained 0% missing data (Table D.4), indicating complete data integrity in the final
subset used for ANOVA.

5. Methods

5.1 Study Design: Philosophical, Theoretical, and Scientific Rationale

This analysis uses a comparative-effectiveness, secondary observational design to test whether
the dataset’s administratively encoded ethnicity categories correspond to detectable variation in a
temperature signal measured under tightly standardized conditions. Because the original study
was designed to evaluate infrared thermography rather than human difference, the present
analysis builds on its controlled ambient temperature, repeated imaging rounds, and validated
facial sites [19, 20]. Within a comparative-effectiveness framework, the goal is estimation rather
than causal inference, emphasizing effect sizes and confidence intervals to characterize the
magnitude and precision of within-dataset differences [35]. One-way ANOVA is therefore used
as a descriptive inferential tool to assess whether the dataset’s predefined categories exhibit
measurable structure beyond random variation. Analytic validity depends on identifying the
constraints of the dataset and evaluating whether those constraints give rise to detectable patterns
in the observed measurements.

Philosophical Logic: Why Group Comparison is the Right Structure

The decision to compare groups reflects a deeper philosophical issue: once encoded as variables,
complex biosocial identities become fixed computational objects that invite statistical
comparison. Group-based analysis does not assume biological kinds; rather, it interrogates how
categories gain stability through measurement. Canguilhem warns that numerical distinctions are
easily mistaken for natural ones when categories are treated as if they merely record reality
rather than constitute it [23]. Fabrega similarly emphasizes the gap between lived identity and its
administrative representation in clinical systems [38]. In this light, ANOVA operates not as a
search for inherent physiological differences but as a way to examine how informational
categories make certain distinctions visible.

Theoretical Logic: Why ANOVA Suits the Data and Question
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The dataset includes six discrete, non-overlapping, non-ordered ethnic labels. The analysis is
therefore concerned with the specific categories encoded by the system, not with sampling from
a broader population of possible labels. These factors function as fixed effects, consistent with
Stahle’s observation that fixed-effects ANOVA is appropriate when the investigator is interested
in the particular levels of a factor rather than an underlying superpopulation [39]. The dependent
variables — T max_mean and T CEmax_mean — are continuous, and averaging multiple
imaging rounds yields stable participant-level estimates. These properties mean that the
theoretical structure of ANOVA aligns directly with the structure of the dataset: discrete
categorical predictors paired with continuous outcomes.

Scientific Logic: Why This Method Advances Health Informatics

Health informatics inevitably reduces complex human variation into computable categories, and
ANOVA offers a way to test whether those categories correspond to distinct underlying
distributions or simply reflect representational design [38]. Under tightly standardized
physiological conditions, the method evaluates whether the encoded ethnic labels carry
measurable informational content or whether they function as inherited artifacts of
documentation. As Cimino argues, controlled vocabularies are useful only when their categories
correspond to discernible differences rather than convenience [40]. ANOVA therefore becomes a
direct test of the informational value of these administrative fields, clarifying which
classifications support reliable inference and which risk misleading downstream analytics. In
doing so, the analysis treats the ontology of the dataset itself as an object of scrutiny and makes
visible how data structures shape and constrain what analytic systems can detect.

5.2 Statistical Framework and Assumptions

Statistical significance was evaluated using a two-sided o level of 0.01. This threshold was
selected given the large sample size and the multiple group comparisons involved, ensuring that
only the more pronounced differences were flagged as statistically significant. Effects with p <
0.01 were interpreted as significant, whereas p > 0.01 was not considered evidence of a
difference. In line with Sun’s emphasis on estimation in comparative-effectiveness research, all
hypothesis tests are accompanied by effect sizes and confidence intervals to characterize the
magnitude and precision of observed differences rather than relying solely on binary significance
[35]. This approach maintains coherence with the study’s broader analytic aim: evaluating
whether the dataset’s encoded categories correspond to measurable structure in the temperature
distribution.

Because the purpose of ANOVA is to determine whether observed between-group differences
exceed what can be attributed to random error, its validity depends on whether the model’s
assumptions correctly characterize that error structure. Stahle emphasizes that ANOVA’s F-ratio
is interpretable only when its pooled residual variance is a faithful estimate of underlying noise;
if groups differ in variance or if residuals deviate substantially from normality, the F-statistic can
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reflect artifacts of dispersion rather than genuine differences between means [39]. This matters
directly for the present study’s analytic aim, which asks whether encoded categories correspond
to meaningful structure in the temperature distribution: such structure cannot be inferred unless
the noise model is sound. Therefore, residual normality and homogeneity of variances were
evaluated using Q-Q plots, the Shapiro-Wilk test, and the Brown-Forsythe version of Levene’s
test. Across all analyses, effect sizes and confidence intervals accompany p-values to maintain an
emphasis on estimation rather than binary significance.

T _CEmax_mean ANOVA Assumption Validation

For T CEmax_mean, residual diagnostics indicated that the ANOVA assumptions were
reasonably satisfied. The Q-Q plot showed approximately normal residuals with modest tail
deviations consistent with large sample sizes. Although the Shapiro-Wilk test was statistically
significant (W = 0.90, p < 2.2x107'°), this reflects the test’s sensitivity to minor departures from
normality rather than substantive distortion of the residual distribution. Variance equality across
ethnicity groups was supported by the Brown-Forsythe test (F = 0.57, p = 0.72). These
diagnostics, presented in Appendix E.1, indicate that the normality and homoscedasticity
assumptions for one-way ANOVA were adequately met for T CEmax_mean.

T_max_mean ANOVA Assumption Validation

For T max_mean, residual diagnostics indicated that ANOVA assumptions were adequately met.
The Q-Q plot showed approximately normal residuals with minor tail deviations typical of large
samples, and although the Shapiro-Wilk test was statistically significant (W =0.91, p <
2.2x1071%), this reflected test sensitivity rather than substantive non-normality. Variance equality
across ethnicity groups was supported by the Brown-Forsythe test (F = 0.55, p =0.74). The
corresponding diagnostics, provided in Appendix E.2, demonstrate that the normality and
homoscedasticity assumptions were reasonably satisfied for T _max_mean.

Because both temperature measures met ANOVA’s normality and variance assumptions, the
one-way ANOVA models were considered appropriate for evaluating mean temperature
differences across ethnicity groups. The subsequent analyses therefore proceed using standard
ANOVA without the need for variance-robust or permutation-based alternatives.

6. Results

6.1 ANOVA Results

A one-way ANOVA indicated a statistically significant effect of ethnicity on inner-canthus
temperature, F(5, 882) = 6.73, p = 3.64x107°. Although the absolute temperature differences
were modest, the effect size was nonzero (n*> = 0.04, 95% CI: 0.02-1.00), meaning that roughly
4% of the variance in T_CEmax_mean was associated with the encoded categories. Because 1?* is
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a bounded parameter and the true variance explained is extremely small, the confidence interval
expands markedly, a pattern noted in methodological discussions of fixed-effects ANOVA when
effects approach the lower boundary [39].

The pattern of group means shows a subtle but consistent gradient. Asian and American
Indian/Alaska Native participants were clustered at the lower end of the temperature distribution,
whereas Hispanic/Latino, Multiracial, and White participants tended to exhibit slightly higher
mean inner-canthus values. Black or African-American participants fell near the middle of the
distribution. Importantly, the group confidence intervals overlap substantially, indicating that the
categories do not demarcate sharp underlying boundaries and should not be interpreted as
evidence of intrinsic biological differentiation, even though their aggregated means differ
statistically. Complete statistical output and the corresponding visualization are provided in
Appendix F.1.

A second ANOVA tested whether full-face maximum temperature (T _max_mean) differed
across groups. This model also revealed a significant effect of ethnicity, F(5, 882) =4.15,p =
0.000993, with a small effect size (n? = 0.02, 95% CI: 0.01-1.00). The ordering of groups means
broadly mirrored that of the inner-canthus measure, with Hispanic/Latino and Multiracial groups
exhibiting the highest observed values, American Indian/Alaska Native at the low end, and other
groups distributed between these extremes. Again, the magnitude of the differences was small,
and group intervals overlapped, but the directional consistency across two independent facial
temperature metrics suggests that the encoded categories impose a reproducible structure on the
dataset. Complete results and the associated plot appear in Appendix F.2.

Although between-group differences reached statistical significance, the underlying temperature
distributions remained tightly bound. Across all six groups, the total spread in mean
inner-canthus temperature was only about 0.30 °C, and full-face maximum temperatures varied
by roughly 0.20 °C from lowest to highest. Within-group variability was similarly compact, with
standard deviations typically well under 0.7 °C, indicating that each group was narrowly
clustered around its mean.

7. Discussion

7.1 Clinical Lens

The statistically significant differences observed across encoded ethnic categories were small in
magnitude and fall well below thresholds of clinical concern. The narrow confidence intervals,
supported by the large sample size, show that although ANOVA detects structure in the data, the
effect sizes (n? = 0.02-0.04) indicate that ethnicity, as defined by the dataset’s administrative
categories, accounts for very little variance in the measured temperature signal under controlled
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conditions. A single temperature reading carries low information density and often provides
limited clinical insight without contextual or repeated measurements, since surface temperature
does not directly reflect core thermoregulation [1, 3]. Clinically, thresholds such as “fever”
function as decision rules that balance risk, uncertainty, and expected utility rather than as strict
numeric boundaries [41]. Importantly, the observed between-group differences lie close to the
uncertainty margins of non-contact infrared systems (approximately 0.3 °C), making differences
of this scale difficult to distinguish reliably from ordinary measurement variability even under
standardized imaging conditions [5]. In this context, the modest group differences observed here
should not be interpreted as clinically meaningful.

Real-world practice further reduces any potential clinical significance. Holtzclaw notes that
thermometers detect only the heat present at their interface and that readings vary substantially
across sites because temperature has meaning only in relation to the region being measured and
the mode of heat transfer involved [4]. In routine care, clinicians use different sites, techniques,
and devices, and patients may not be positioned, acclimated, or prepared in consistent ways [4,
11]. Device performance also varies in practice, even in hospital settings, further amplifying
uncertainty around small temperature differences. These sources of variability make it unlikely
that small, statistically detectable differences (on the order observed in this dataset) would hold
diagnostic value in real clinical environments.

7.2 Informatics Lens

From an informatics perspective, these findings show how data models can manufacture
apparent structure by stabilizing both identity and uncertainty. Encoding ethnicity as a discrete
field converts fluid, context-dependent identity into a durable computational object, so variation
is organized and compared along boundaries the schema itself defines. As Cimino notes,
controlled vocabularies create an appearance of conceptual clarity because they require
unambiguous entries [40]. At the same time, clinical evaluations show that infrared and
non-contact devices vary widely in accuracy and often fail to meet ISO and ASTM standards,
with readings shaped by the measurement interface and subject to calibration drift [4, 5]. When
such measurement uncertainty is ingested into informatics pipelines, it does not remain noise.
Instead, aggregation, stratification, and reuse can stabilize small calibration or site-dependent
fluctuations as consistent group differences. The resulting patterns reflect not inherent biological
separation, but the joint imprint of representational schemas that discretize identity and
numerical abstractions that render temperature comparable even as its uncertainty remains
unresolved.

The directional pattern of group means, where Asian and American Indian or Alaska Native
participants tended to fall slightly lower and Hispanic or Latino and Multiracial participants
slightly higher, may reflect several non-physiological mechanisms made visible through the
dataset’s representational structure. Prior controlled studies show that skin emissivity does not
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differ meaningfully across pigmentation levels [14, 15], yet report small apparent temperature
differences under identical imaging conditions [15, 17], implicating device-specific signal
processing, surface reflectance, and radiance-to-temperature conversion rather than intrinsic
thermoregulation. A second possibility lies in the administrative categories themselves, which
vary in size and internal heterogeneity and can influence the stability of aggregated means once
encoded as fixed analytic fields. Because the dataset includes no direct measures of
pigmentation, ancestry, or environmental context, these mechanisms cannot be evaluated
independently. Their consistency across both thermographic measures therefore points to the
joint effects of measurement and categorical encoding, illustrating how informatics ontologies
can render modest, non-specific variation statistically visible without implying biological
distinction.

7.3 Epidemiologic Lens

From an epidemiologic standpoint, the internal validity of the analysis is strong but tightly
bounded. Measurement conditions were standardized, exposures and outcomes were assessed
uniformly across groups, and age-related physiological variation was reduced through restriction.
The large overall sample size limits random error and yields narrow confidence intervals, making
it unlikely that the observed associations are due to chance alone [42]. However, precision is
uneven across strata. Several ethnicity categories contain relatively few participants, which
inflates uncertainty around their group means and limits the stability of between-group
comparisons despite the large total sample.

External validity is more constrained and hinges on construct validity rather than sampling alone.
The cohort consists almost entirely of healthy young adults, but the more consequential
limitation lies in the ethnicity variable itself. The dataset provides no information on how
ethnicity was assigned, whether by self-report, administrative classification, or observer
judgment, nor does it specify the criteria governing group membership. As a result, the exposure
under analysis is an unverified administrative label whose correspondence to sociocultural
identity, ancestry, or phenotype cannot be assessed.

In epidemiologic terms, this uncertainty weakens interpretability more than the cohort’s narrow
age range. Any statistically detectable differences across groups therefore describe the behavior
of the encoded variable within this dataset rather than a property of populations beyond it. The
findings are best understood as internally valid patterns generated under controlled conditions,
with limited generalizability and no warrant for physiological inference across ethnic groups.
This distinction is critical: the analysis supports inference about data structure, not about
biological difference.
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7.4 Philosophical Lens

These findings sharpen a broader philosophical concern: when complex forms of human
difference are compressed into fixed computational labels, the resulting numerical distinctions
can easily be mistaken for natural ones. Small statistical differences across encoded ethnic
groups demonstrate not biological separation but the ease with which classificatory structures
acquire the appearance of biological meaning. As Fabrega noted, medical categories often reflect
sociocultural convention rather than intrinsic boundaries [38]; the present results exemplify how
such conventions can stabilize into seemingly objective differences through their incorporation
into measurement and analytic systems.

The “Multiracial” category makes this dynamic especially visible. It aggregates heterogeneous
ancestries, phenotypes, and lived identities into a single residual bin, and the statistical
imprecision surrounding this group reflects that indeterminacy. The wide confidence interval
alone reveals the looseness of the category itself. When a label has no coherent boundary, the
variability attached to it becomes an artifact of its construction rather than evidence of distinct
thermal physiology.

The patterns in this dataset show how classification systems designed for operational simplicity
can shape the differences they appear to detect. The issue is not flawed measurement, but
representational scaffolding that imposes categorical boundaries with limited correspondence to
lived or physiological variation. The next section turns to possible approaches for redesign.

8. Proposed Solutions

8.1 Ontology Refinement

A first direction for improvement lies in refining the representational structures through which
health-informatics systems encode biosocial identity. Current ethnicity fields are rigid, mutually
exclusive, and administratively defined, collapsing multidimensional social experience into
single categorical bins that statistical models then treat as biologically meaningful. Cimino’s
desiderata emphasizes concept orientation, polyhierarchy, and nonsemantic identifiers as ways to
preserve nuance and support multiple analytic purposes without sacrificing interoperability [40].
Applying this logic would mean replacing monolithic ethnicity fields with multi-scalar identity
structures that allow individuals to be represented across dimensions such as ancestry
(probabilistic and multi-valued), sociocultural affiliation (e.g., migration history, linguistic
community), and clinically relevant contextual factors. This approach prevents administrative
abstractions from gaining unwarranted ontological weight and offers a representational solution
that aligns with both informatics design principles and the philosophical concerns raised in the
analysis.
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8.2 Personalized Baselines

A second solution reorients the problem entirely by shifting focus from between-group
comparisons to within-person physiology. As research in thermoregulation and longitudinal
temperature measurement demonstrates, individual “normal” temperatures vary systematically
and cannot be reduced to a single population mean [11, 12]. Precision medicine has long
recognized that a patient’s baseline is more informative for decision-making than comparisons to
externally defined norms, and clinical reasoning frameworks grounded in Bayesian decision
analysis likewise treat thresholds as context-dependent estimates influenced by patient values
and expected utilities rather than fixed biological cutoffs [41, 43]. A personalized-baseline
approach would extend this logic to thermal data by generating individualized reference ranges
through repeated or longitudinal measurements, interpreting deviations relative to an individual’s
stable pattern rather than the population’s average. Such an approach directly addresses the
philosophical concern raised by Canguilhem that statistical norms are not physiological ideals,
and it offers a practical way to avoid overinterpreting small group-level differences that may
simply reflect demographic or administrative structure [23]. Whether such an individualized
system is feasible at scale is a separate question, but the conceptual logic remains sound.

8.3 Multi-Scale Modeling

A third avenue for future work involves adopting multi-scale computational models to overcome
the limitations of purely statistical generalization. As An argues, statistical inference becomes
unreliable when the denominator — the space of possible variation — is poorly specified, a
condition common in human biological and social data [44]. Administrative ethnicity categories
compress heterogeneity in ways that obscure the mechanisms linking identity, physiology,
behavior, and environment; ANOVA can test for differences between groups, but not for the
origins or coherence of those groups. Multi-scale modeling offers a theory-based alternative by
mapping processes across biological, behavioral, and social levels, enabling researchers to
represent how heterogeneity arises rather than forcing it into static bins. Such models can
integrate diverse data types, capture dependencies across scales, and provide a structured
framework for generalization that does not depend on fragile population averages. In doing so,
they directly address the epistemological tension at the heart of contemporary informatics: how
to build systems that preserve meaningful variation rather than flatten it for computational
convenience.

9. Limitations and Future Work

9.1 Data Limitations

Although the study benefits from unusually controlled imaging conditions, several limitations
constrain the inferences that can be drawn. The most substantial concerns calibration
transparency. The dataset provides no calibration schedule, reference standards, uncertainty
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margins, or drift checks for the IRT-2 system, despite Zhou’s description of adherence to
consensus guidelines [19]. Without this metadata, small between-group differences cannot be
confidently interpreted as features of the underlying signal rather than residual instrument
behavior. This limitation is nontrivial given that infrared thermometers are sensitive to distance,
angle, and ambient conditions, and even well-maintained devices drift over time and require
verification against reference standards that many instruments fail to meet in practice [4, 5, 9].
Because modern devices typically operate within tolerances of approximately +0.3 to 0.4 °C,
the observed differences fall close to the limits of instrumental resolution, complicating
interpretation.

The dataset partially mitigates instrumental concerns through acclimation protocols and the
exclusion of subjects with inconsistent oral temperatures [20], but these controls do not address a
separate source of uncertainty: residual physiologic microvariation. Even under standardized
imaging conditions, surface temperature fluctuates with vasomotor tone, circadian phase,
emotional arousal, and local perspiration at magnitudes comparable to the observed group
differences [3, 4, 11, 13]. These influences are rarely measured directly and cannot be
retrospectively modeled in secondary analyses. As a result, part of the observed between-group
pattern may reflect ordinary microphysiological variability rather than stable categorical
structure.

Precision is also uneven across categories. Although the overall sample is large, several ethnic
groups contain markedly fewer participants than others, which reduces the stability of their mean
estimates and increases the uncertainty surrounding small differences [42]. Additional
interpretive limits arise from missing phenotypic variables: the dataset includes no measure of
skin pigmentation or Fitzpatrick type, preventing independent evaluation of pigmentation-linked
optical effects that could influence infrared readings [14, 15, 17]. The analytic restrictions further
narrow external validity. Because nearly all participants are between 18 and 30 years of age, the
dataset does not represent the thermoregulatory characteristics of older adults or clinical
populations.

A final limitation concerns construct validity. The dataset provides no information about how
ethnicity was defined or collected, whether through self-report, administrative assignment, or
institutional records. Any detected differences therefore reflect the behavior of an administrative
variable rather than a validated measure of sociocultural or ancestral identity [34].

9.2 Methodological and Theoretical Limitations

Methodologically, the analysis is limited by the structure of ANOVA itself which cannot
determine if differences reflect measurement features, unmeasured factors, or the categorical
design of the dataset [23, 39]. Even when assumptions are met, the fixed-effects formulation
treats ethnicity as a discrete, meaningful variable, mirroring the ontology built into the data
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model. In this sense, the method tests the coherence of the schema rather than the biological
plausibility of the categories it contains.

The theoretical framework also has limits. Testing whether administrative categories map onto a
controlled physiological signal cannot resolve whether small differences arise from category
design, historical residue, or the effects of standardization. As a result, while the analysis probes
the adequacy of existing categories, it cannot specify what alternative representational forms
would more faithfully capture biosocial identity.

9.3 Directions for Empirical and Conceptual Future Work

Future work must therefore proceed on multiple levels. Empirically, a more representative
thermal dataset spanning age, geography, device variability, and clinical contexts would allow for
hierarchical models capable of separating individual variation from categorical structure.
Longitudinal designs, following the logic of Obermeyer [12], could estimate individual baseline
temperatures and test whether group-level differences persist once intra-individual variation and
environmental context are modeled explicitly. More granular measurement, incorporating
additional physiological variables such as vasomotor reactivity, circadian phase, or hormonal
status could clarify whether subtle differences arise from physiology or sampling.

From an informatics perspective, alternative representational structures are needed to move
beyond fixed administrative categories. This may include ontologies that encode multiscalar
identity (ancestry, migration history, lived experience), probabilistic rather than discrete
membership, or narrative-linked metadata, as suggested by work in structured narrative and
semantic representation [29, 30]. Such approaches could preserve the interoperability required
for computation while reducing the risk of granting biological weight to categorical abstractions.

Finally, future philosophical work should evaluate how measurement practices — whether
thermometric or informatic — shape what counts as biological knowledge. As the history of
thermometry demonstrates, numerical conventions can become epistemic anchors long after their
empirical foundations have shifted. A reflexive informatics must therefore confront not only how
to measure difference, but how measurement itself produces the categories through which
difference becomes legible.

10. Conclusion

This study examined whether the ethnic categories encoded in a tightly controlled thermographic
dataset corresponded to measurable variation in facial temperature. The analyses revealed
statistically reliable but clinically modest differences, accounting for only a small fraction of
total variability. These effects do not reflect intrinsic physiological distinctions; rather, they show
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how categorical structures built into a dataset can generate the appearance of patterned
differences under conditions of high measurement precision. Once complex identities are
encoded as fixed computational fields, they acquire a stability and interpretive weight that
exceed their sociocultural origins.

The findings highlight a broader epistemic point: measurement is not a passive mirror of reality
but an active constructor of it. Statistical differences emerge from the representational choices
that make them possible, and in health informatics those choices determine which forms of
human variation become legible, actionable, or pathologized. Just as 37 °C became ‘normal’
through measurement practices rather than universal physiology, so too may the demographic
categories that shape modern analytics. Recognizing this symmetry is essential: otherwise
today’s informatics risks repeating the epistemic blind spots of 19th-century thermometry. In this
sense, the architecture of our data systems becomes the architecture of our truths, and designing
more responsive and inclusive informatics requires not only better instruments but categories
capable of capturing human diversity without reifying it.

11. Computational Reproducibility

To support transparency, reproducibility, and independent verification, all data-processing steps
used in this analysis are fully documented in the project’s GitHub repository:

https://github.com/anais-lohier/bis560-aml276/tree/main

Because several preliminary cleaning steps were performed in Excel, the repository includes
three sequential versions of the dataset: (1) the original raw file, (2) the Excel-processed version
with filtered variables and averaged temperature fields, and (3) the R-processed analytic dataset
used for the final models. This provides a clear audit trail from raw input to analytic output.

All statistical analysis and data wrangling were conducted in R (RStudio), with preliminary
variable filtering and averaging performed in Microsoft Excel. The repository contains all R
scripts used for data cleaning, missingness evaluation, and summary statistics. Since both the
original dataset and the full analytic workflow are publicly available, the results can be
independently replicated without relying on undocumented steps or proprietary data.
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Appendix A

Figure A.1 Early Conceptualizations of Temperature

Haslerus’s table represents one of the earliest known numerical temperature scales. It arranges
nine degrees of heat and cold symmetrically around a neutral midpoint (marked 0),
corresponding to the “equal temperature” of the human body in Galenic theory. The rightmost
column shows calculated celestial and terrestrial values, while the central columns record the
numerical progression from the extremes (fourth degree of heat at the equator to fourth degree of
cold at the pole). Each step corresponds to one-third intervals, linking climate, geography, and
physiology.
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Source: Joannes Haslerus, De Logistica Medica [6], reproduced in F. Sherwood Taylor [2].
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Figure A.2 Early Tools for Experimental Thermometry

Santorio Santorio’s thermoscopium represents one of the earliest known applications of
temperature measurement in clinical observation. Built around 1612-1626, his device consisted
of a glass bulb and a long, narrow stem partially submerged in water or alcohol. As air inside the
bulb expanded or contracted with temperature changes, the liquid in the stem rose or fell,
allowing visible comparison rather than calibrated measurement. The accompanying pulsilogium
(pendulum) shown on the left of the illustration was used to time the patient’s pulse and
respiration, demonstrating Santorio Santorio’s effort to unify bodily observation with
quantifiable rhythm. These instruments reflected a new epistemic ideal in seventeenth-century
medicine, being that health and disease could be rendered measurable through instruments rather
than perception alone.

Fi16. 3.—The thermameter of Sanctorius (1626, op. cit., col. 22), with pulsilogium on left.

Joannes Haslerus, De Logistica Medica [6] as reproduced in F. Sherwood Taylor [2].
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Appendix B

Figure B.1 Transformation of Biopsychosocial Reality into Computable Medical Data

This diagram illustrates how complex biopsychosocial reality is progressively transformed into
standardized, computable data within health-informatics systems. Each step — from lived
experience, to biomedical framing, to data abstraction — filters out nuance and embeds
institutional assumptions into the resulting categories. The recursive structure of the diagram
highlights that once categories are encoded, they continue to shape downstream interpretation,
system design, and the patterns analytics can detect. This visual foregrounds the central argument
of the paper: that measurement and representation co-produce the forms of human difference that
become visible in clinical data.
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Appendix C

Figure C.1 Facial Regions of Interest

Standardized facial regions of interest (ROIs) used in the thermographic study by Zhou et al.
Temperatures were extracted from delineated zones — including the inner canthi, forehead, oral
region, and whole-face maximum — to evaluate which sites most reliably track core temperature.
This image demonstrates how anatomical standardization reduces measurement variability and
why the two regions used in the present analysis (T _max and T CEmax) are methodologically
preferable.

_Trcmax (max of center forehead ROI)

T rgmax (Max of extended forehead ROI)

B Te = Mean{Tey, , Ter}
-1'& » Tepmax (Mean and max of left canthus ROI) Temart = Max {Tey, Teg)
~Tcr » Termax (mean and max of right canthus ROI)

TCmaxZ = Max {TCLma.rf TCRme}

Subscripts:
~—TcEmax (max of extended canthus ROI) FC —FporeheadCemer CL — Canthus Left
FT — Forehead Top CR — Canthus Right
T Mmax (mMax of mouth ROI) FB — Forehead Bottom CE — Canthus Extended
FL - Forehead Left M — Mouth
T (max of full face ROI) FR —Forehead Right max — maximum
max FE — Forehead Extended T — mean

Figure 1. Delineated facial regions and critical points on thermal images: forehead regions and points (green), canthi region and points (red), mouth region (gray rectangle), and entire face
(blue rectangle).
Note: The above image is a generic face (based on PowerPoint clip art: Insert > lcons > Cutout People >Alfredo) used for illustration purposes and not an actual participant in our study.

Data reproduced from Zhou [19].
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Figure C.2 Device Performance Comparison (IRT-1 vs. IRT-2)

Comparative performance metrics for the two infrared thermography devices (IRT-1 and IRT-2)
used in the original study. IRT-2 shows stronger correlations with core temperature and higher
AUC values for both T max and T _CEmax, especially under controlled conditions. This
comparison motivates the analytic decision to restrict the present study to IRT-2 measurements,
ensuring that observed differences are less influenced by instrument noise and more reflective of
the dataset’s categorical structure.

Fearson correlation coefficients (r values) between facial temperatures and Tref.
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Forehead Inner canthi Mouth Face
TF TFTTF TFL TF TFCma TFEma TC TC T TCmax TCLma TCRma TCmax TCEma TMma Tma
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Data reproduced from Zhou [19].
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This table presents the demographic composition of the original Zhou et al. dataset, including
age range, gender distribution, and ethnic categories for both IRT systems. These distributions
contextualize the analytic restrictions despite strong procedural control.

Table 1 Demographics of study subjects.

Female
Male

Age 18 to 20
21 to 30
31 to 40
41 to 50
51 to 60
>60

Ethnicity White
Black/African-American
Hispanic/Latino
Asian
Multiracial
American Indian

Tref >37.5°C

IRT-1
Subjects %
329 60.5
215 395
263 48.3
247 45.4
21 3.9
4 0.7
7 1.3
2 0.4
257 47.2
78 14.3
39 7.2
138 25.4
30 5.5
2 0.4
47 8.6

IRT-2
Subjects %
328 60.7
212 39.3
262 48.5
244 452
21 3.9
4 0.7
7 1.3
2 0.4
254 47.0
79 14.6
39 7.2
136 25.2
30 56
2 0.4
47 8.7

Data reproduced from Zhou [19].
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Table D.1 Ethnicity Distribution of Subset

The following table summarizes the ethnic composition of the analytic subset. Counts and
percentages are presented to document the distribution of participants retained after age filtering

and variable selection.

Ethnicity

American Indian or Alaskan Native
Asian

Black or African-American
Hispanic/Latino

Multiracial

White

222
124
51
42
446

Percent
0.34
25.00
13.96
5.74
473
50.23
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The following provides summary statistics for both temperature measures across ethnicity
groups. Mean values and standard deviations are shown to document the central tendency and
variability of the analytic variables used in the ANOVA models.

Descriptive Statistics for T_CEmax_mean by Ethnicity

Ethnicity mean_T_CEmax sd_T_CEmax min_T_CEmax max_T_CEmax
American Indian or Alaskan Native 35.566750 0.1399330 35.44500 35.72000
Asian 35.61275 0.6113726 34.04000 38.15250
Black or African-American 35.65556 0.6671181 34.60250 38.78000
Hispanic/Latino 35.79961 0.5002983 34.75333 3718500
Multiracial 35.87379 0.6847764 34.97000 38.58667
White 35.88308 0.6392309 34.50000 38.90667

Ethnicity mean_T_max
American Indian or Alaskan Native 35.98917
Asian 35.97580
Black or African-American 36.05780
Hispanic/Latino 36.12412
Multiracial 36.17319

White 36.18989

Descriptive Statistics for T_max_mean by Ethnicity

sd_T_max

0.0490111
0.5692262

0.6133127
0.5520544
0.6560229
0.6069165

min_T_max
35.93750
34.39000
34.98750
35.22333
35.38500
34.50000

max_T_max
36.03500
38.16250
38.83667
37.61500
39.15667
38.90667
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Table D.3 Missingness across Rounds

This table reports the number and percentage of missing observations for each of the four
measurement rounds for both temperature variables. This table provides transparency about
completeness prior to averaging round-level values.

Variable Missing Percent
canthiMax1 54 5135
T_Max1 54 5.35
canthiMax2 131 12.98
T_Max2 130 12.88
canthiMax3 113 11.20
T_Max3 113 11.20
canthiMax4 130 12.88
T_Max4 132 13.08

Table D.4 Missingness after Averaging

The following shows missingness for the final analytic variables after round-level temperatures
were averaged. All retained variables have complete data, confirming that the analytic subset
used for ANOVA contains no missing observations.

Variable Missing
T_CEmax_mean 0
T_max_mean 0
Gender 0
Age 0

0

Ethnicity
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Appendix E

Figure E.1 Statistical Assumptions for T_CEmax_mean

This figure summarizes the ANOVA diagnostic checks for T CEmax_mean, including a Q-Q
plot of residuals, the Shapiro-Wilk normality test, and the Brown—Forsythe test for homogeneity
of variances. These outputs document whether the model meets the required assumptions.

Q-Q: T_CEmax_mean

Sample Quantiles

Theoretical Quantiles

Shapiro-Wilk normality test

data: rl
W = 0.98365, p-value < 2.2e-16

Levene's Test for Homogeneity of Variance (center = median)
Of F walue Pr{=F)

group 5 0.5699 @.7231
882
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Figure E.2 Statistical Assumptions for T_max_mean

This figure summarizes the ANOVA diagnostic checks for T_max_mean, including the residual
Q-Q plot, Shapiro-Wilk normality test, and Brown-Forsythe test for homogeneity of variances.
These outputs document whether the model satisfies the assumptions required for a one-way
ANOVA.

Q-Q: T_max_mean

Sample Quantiles

Theoretical Quantiles

Shapiro-Wilk normality test

data: ri
W= 90.99678, p-value < Z2.Z2e-16

Levene's Test for Homogeneity of Variance (center = median)
Df F wvalue Pr{=F)

group 5 8.5494 0.7389
882
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Appendix F

Table F.1 ANOVA Analysis and Visualization for T_CEmax_mean

This section provides the complete ANOVA results for T CEmax_mean, including the
F-statistic, p-value, and n? effect size, followed by a visualization of group means with 95%
confidence intervals. Together, the statistical output and plot document the underlying results and
illustrate the magnitude and direction of between-group differences in inner-canthus temperature.

Df Sum Sq Mean 5q F value Pr(=F)
Ethnicity 5 13.4 2.6776 6.729 3.64e-06 #+
Residuals 882 351.0 0.3979

Signif. codes: @ ‘sek' 0.001 's' 0.01 ‘%' 0.065 '." 0.1 ' "1

# Effect Size for ANOVA

Parameter | Etaz | 95% CI

Ethnicity | @.04 | [0.02, 1.00]

- One-sided CIs: upper bound fixed at [1.08].

Mean Inner-Canthus Temperature (+95% CI)

35.8 ®

Mean T_CEmax (“C)

Ethnicity
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Table F.2 ANOVA Analysis and Visualization for T_max_mean
This section provides the complete ANOVA results for T max_mean, including the F-statistic,
p-value, and n? effect size, followed by a visualization of group means with 95% confidence
intervals. Together, the statistical output and plot present the detailed results and illustrate the
pattern and magnitude of between-group differences in full-face maximum temperature.

Df Sum Sg Mean Sq F value Pr(=>F)
Ethnicity 5 7.4 1.4796 4,147 0.000903 s
Residuals 882 314.7 80.3568

Signif. codes: @ 'ssek' 0.001 "s=' 9.01 'kx' 8.85 '.' 0.1 ' ' 1

# Effect 5ize for ANOVA

Parameter | Eta2 | 95% CI

Ethnicity | 0.02 | [8.01, 1.00]

- One-sided CIs: upper bound fixed at [1.@0].

Mean Full-Face Maximum Temperature (+95% CI)

[
&

F

&

Mean T_max (°C)

Sy
&

Ethnicity




